change fifo source and finish testbench file for isp

This commit is contained in:
SikongJueluo 2024-05-16 17:15:25 +08:00
parent 21c763f54f
commit 74425d1c28
No known key found for this signature in database
GPG Key ID: D2D3D29A993716EA
13 changed files with 961 additions and 511 deletions

894
FIFO/SOFTFIFO.v Normal file
View File

@ -0,0 +1,894 @@
`timescale 1ns/1ps
//
// ===========================================================================
// Copyright (c) 2011-2022 Anlogic Inc. All Right Reserved.
//
// TEL: 86-21-61633787
// WEB: http://www.anlogic.com/
// ===========================================================================
// $Version : v1.1
// $Date : 2022/07/08
// $Description: asynchronous/synchronous FIFO rtl codes , fixed the error of
// gray code
// ===========================================================================
//`pragma protect begin
module SOFTFIFO #(parameter DATA_WIDTH_W = 16,
parameter DATA_WIDTH_R = 16,
parameter ADDR_WIDTH_W = 10,
parameter ADDR_WIDTH_R = 10,
parameter AL_FULL_NUM = 1021,
parameter AL_EMPTY_NUM = 2,
parameter SHOW_AHEAD_EN = 1'b1,
parameter OUTREG_EN = "OUTREG") (
//SHOWAHEAD mode enable
//OUTREG, NOREG
//independent clock mode,fixed as asynchronous reset
input rst, //asynchronous port,active hight
input clkw, //write clock
input clkr, //read clock
input we, //write enable,active hight
input [(DATA_WIDTH_W - 1):0] di, //write data
input re, //read enable,active hight
output [(DATA_WIDTH_R - 1):0] dout, //read data
output reg valid, //read data valid flag
output reg full_flag, //fifo full flag
output empty_flag, //fifo empty flag
output reg afull, //fifo almost full flag
output aempty, //fifo almost empty flag
output [(ADDR_WIDTH_W - 1):0] wrusedw, //stored data number in fifo
output [(ADDR_WIDTH_R - 1):0] rdusedw //available data number for read
) ;
//--------------------------------------------------------------------------------------------
//-------------internal parameter and signals definition below---------------
//--------------------------------------------------------------------------------------------
//-------------parameter definition
localparam FULL_NUM = ({ADDR_WIDTH_W{1'b1}} - 1) ;
//-------------signals definition
reg asy_w_rst0 ;
reg asy_w_rst1 ;
reg asy_r_rst0 ;
reg asy_r_rst1 ;
wire rd_rst ;
wire wr_rst ;
wire [(ADDR_WIDTH_R - 1):0] rd_to_wr_addr ; // read address synchronized to write clock domain
wire [(ADDR_WIDTH_W - 1):0] wr_to_rd_addr ; // write address synchronized to read clock domain
reg [(ADDR_WIDTH_W - 1):0] wr_addr ; // current write address
reg [(ADDR_WIDTH_R - 1):0] rd_addr ; // current write address
wire wr_en_s ;
wire rd_en_s ;
reg [(ADDR_WIDTH_W - 1):0] shift_rdaddr ;
reg [(ADDR_WIDTH_R - 1):0] shift_wraddr ;
wire [(ADDR_WIDTH_W - 1):0] wr_addr_diff ; // the difference between read and write address(synchronized to write clock domain)
wire [(ADDR_WIDTH_R - 1):0] rd_addr_diff ; // the difference between read and write address(synchronized to read clock domain)
reg empty_flag_r1 ;
reg empty_flag_r2 ;
reg re_r1 ;
reg re_r2 ;
//--------------------------------------------------------------------------------------------
//--------------------fuctional codes below---------------------------------
//--------------------------------------------------------------------------------------------
// =============================================
// reset control logic below;
// =============================================
//Asynchronous reset synchronous release on the write side
always
@(posedge clkw or
posedge rst)
begin
if (rst)
begin
asy_w_rst0 <= 1'b1 ;
asy_w_rst1 <= 1'b1 ;
end
else
begin
asy_w_rst0 <= 1'b0 ;
asy_w_rst1 <= asy_w_rst0 ;
end
end
//Asynchronous reset synchronous release on the read side
always
@(posedge clkr or
posedge rst)
begin
if (rst)
begin
asy_r_rst0 <= 1'b1 ;
asy_r_rst1 <= 1'b1 ;
end
else
begin
asy_r_rst0 <= 1'b0 ;
asy_r_rst1 <= asy_r_rst0 ;
end
end
assign rd_rst = asy_r_rst1 ;
assign wr_rst = asy_w_rst1 ;
// =============================================
// address generate logic below;
// =============================================
// write and read ram enable
assign wr_en_s = ((!full_flag) & we) ;
assign rd_en_s = ((!empty_flag) & re) ;
// generate write fifo address
always
@(posedge clkw or
posedge wr_rst)
begin
if ((wr_rst == 1'b1))
wr_addr <= 'b0 ;
else
if (wr_en_s)
wr_addr <= (wr_addr + 1) ;
end
// generate rd fifo address
always
@(posedge clkr or
posedge rd_rst)
begin
if ((rd_rst == 1'b1))
rd_addr <= 'b0 ;
else
if (rd_en_s)
rd_addr <= (rd_addr + 1) ;
end
always
@(*)
begin
if ((ADDR_WIDTH_R >= ADDR_WIDTH_W))
begin
shift_rdaddr = (rd_to_wr_addr >> (ADDR_WIDTH_R - ADDR_WIDTH_W)) ;
shift_wraddr = (wr_to_rd_addr << (ADDR_WIDTH_R - ADDR_WIDTH_W)) ;
end
else
begin
shift_rdaddr = (rd_to_wr_addr << (ADDR_WIDTH_W - ADDR_WIDTH_R)) ;
shift_wraddr = (wr_to_rd_addr >> (ADDR_WIDTH_W - ADDR_WIDTH_R)) ;
end
end
// two's complement format
assign wr_addr_diff = (wr_addr - shift_rdaddr) ; // the count of data writen to fifo
assign rd_addr_diff = (shift_wraddr - rd_addr) ; // the count of data available for read
// =============================================
// generate all output flag and count below;
// =============================================
// generate fifo full_flag indicator
always
@(posedge clkw or
posedge wr_rst)
begin
if ((wr_rst == 1'b1))
full_flag <= 1'b0 ;
else
if ((wr_addr_diff >= FULL_NUM))
full_flag <= 1'b1 ;
else
full_flag <= 1'b0 ;
end
// generate fifo afull indicator
always
@(posedge clkw or
posedge wr_rst)
begin
if ((wr_rst == 1'b1))
afull <= 1'b0 ;
else
if ((wr_addr_diff >= AL_FULL_NUM))
afull <= 1'b1 ;
else
afull <= 1'b0 ;
end
// generate fifo empty_flag indicator
/* verilator lint_off WIDTHEXPAND */
assign empty_flag = ((rd_addr_diff == 5'b0) ? 1'b1 : 1'b0) ;
// generate fifo aempty indicator
assign aempty = ((rd_addr_diff <= AL_EMPTY_NUM) ? 1'b1 : 1'b0) ;
// the count of data writen to fifo
assign wrusedw = wr_addr_diff ;
// the count of data available for read
assign rdusedw = rd_addr_diff ;
// delay empty_flag for 2cycle
always
@(posedge clkr or
posedge rd_rst)
begin
if ((rd_rst == 1'b1))
begin
empty_flag_r1 <= 1'b1 ;
empty_flag_r2 <= 1'b1 ;
end
else
begin
empty_flag_r1 <= empty_flag ;
empty_flag_r2 <= empty_flag_r1 ;
end
end
// delay rd_en_s for 2cycle
always
@(posedge clkr or
posedge rd_rst)
begin
if ((rd_rst == 1'b1))
begin
re_r1 <= 1'b0 ;
re_r2 <= 1'b0 ;
end
else
begin
re_r1 <= rd_en_s ;
re_r2 <= re_r1 ;
end
end
// generate data output valid flag
always
@(*)
begin
if ((SHOW_AHEAD_EN && (OUTREG_EN == "NOREG")))
valid = (!empty_flag) ;
else
if (((!SHOW_AHEAD_EN) && (OUTREG_EN == "OUTREG")))
valid = (re_r2 & (!empty_flag_r2)) ;
else
valid = (re_r1 & (!empty_flag_r1)) ;
end
// =============================================
// instance logic below;
// =============================================
// fifo read address synchronous to write clock domain using gray code
fifo_cross_domain_addr_process_al_SOFTFIFO #(.ADDR_WIDTH(ADDR_WIDTH_R)) rd_to_wr_cross_inst (.primary_asreset_i(rd_rst),
.secondary_asreset_i(wr_rst),
.primary_clk_i(clkr),
.secondary_clk_i(clkw),
.primary_addr_i(rd_addr),
.secondary_addr_o(rd_to_wr_addr)) ;
// fifo write address synchronous to read clock domain using gray code
fifo_cross_domain_addr_process_al_SOFTFIFO #(.ADDR_WIDTH(ADDR_WIDTH_W)) wr_to_rd_cross_inst (.primary_asreset_i(wr_rst),
.secondary_asreset_i(rd_rst),
.primary_clk_i(clkw),
.secondary_clk_i(clkr),
.primary_addr_i(wr_addr),
.secondary_addr_o(wr_to_rd_addr)) ;
ram_infer_SOFTFIFO #(
.DATAWIDTH_A(DATA_WIDTH_W),
.ADDRWIDTH_A(ADDR_WIDTH_W),
.DATAWIDTH_B(DATA_WIDTH_R),
.ADDRWIDTH_B(ADDR_WIDTH_R),
.MODE("SDP"),
.REGMODE_B(OUTREG_EN)
/* verilator lint_off PINMISSING */
) ram_inst (
.clka(clkw),
.rsta(wr_rst),
.cea(1'b1),
.wea(wr_en_s),
.ocea(1'b0),
.dia(di),
.addra(wr_addr),
.clkb(clkr),
.rstb(rd_rst),
.ceb((SHOW_AHEAD_EN | rd_en_s)),
.web(1'b0),
.oceb(1'b1),
/* verilator lint_off WIDTHEXPAND */
.addrb((rd_addr + (SHOW_AHEAD_EN & rd_en_s))),
.dob(dout)
);
endmodule
`timescale 1ns/1ps
// ===========================================================================
// $Version : v1.0
// $Date : 2022/04/26
// $Description: fifo write and read address crocess domain process
// ===========================================================================
/* verilator lint_off DECLFILENAME */
module fifo_cross_domain_addr_process_al_SOFTFIFO #(parameter ADDR_WIDTH = 9) (
input primary_asreset_i,
input secondary_asreset_i,
input primary_clk_i,
input secondary_clk_i,
input [(ADDR_WIDTH - 1):0] primary_addr_i,
output reg [(ADDR_WIDTH - 1):0] secondary_addr_o) ;
//--------------------------------------------------------------------------------------------
//-------------internal parameter and signals definition below---------------
//--------------------------------------------------------------------------------------------
//-------------localparam definition
//-------------signals definition
wire [(ADDR_WIDTH - 1):0] primary_addr_gray ;
reg [(ADDR_WIDTH - 1):0] primary_addr_gray_reg ; /* fehdl keep="true" */
reg [(ADDR_WIDTH - 1):0] sync_r1 ; /* fehdl keep="true" */
reg [(ADDR_WIDTH - 1):0] primary_addr_gray_sync ;
//--------------------------------------------------------------------------------------------
//--------------------fuctional codes below---------------------------------
//--------------------------------------------------------------------------------------------
function [(ADDR_WIDTH - 1):0] gray2bin ;
input [(ADDR_WIDTH - 1):0] gray ;
integer j ;
begin
gray2bin[(ADDR_WIDTH - 1)] = gray[(ADDR_WIDTH - 1)] ;
for (j = (ADDR_WIDTH - 1) ; (j > 0) ; j = (j - 1))
gray2bin[(j - 1)] = (gray2bin[j] ^ gray[(j - 1)]) ;
end
endfunction
function [(ADDR_WIDTH - 1):0] bin2gray ;
input [(ADDR_WIDTH - 1):0] bin ;
integer j ;
begin
bin2gray[(ADDR_WIDTH - 1)] = bin[(ADDR_WIDTH - 1)] ;
for (j = (ADDR_WIDTH - 1) ; (j > 0) ; j = (j - 1))
bin2gray[(j - 1)] = (bin[j] ^ bin[(j - 1)]) ;
end
endfunction
// convert primary address to grey code
assign primary_addr_gray = bin2gray(primary_addr_i) ;
// register the primary Address Pointer gray code
always
@(posedge primary_clk_i or
posedge primary_asreset_i)
begin
if ((primary_asreset_i == 1'b1))
primary_addr_gray_reg <= 0 ;
else
primary_addr_gray_reg <= primary_addr_gray ;
end
//--------------------------------------------------------------------
// secondary clock Domain
//--------------------------------------------------------------------
// synchronize primary address grey code onto the secondary clock
always
@(posedge secondary_clk_i or
posedge secondary_asreset_i)
begin
if ((secondary_asreset_i == 1'b1))
begin
sync_r1 <= 0 ;
primary_addr_gray_sync <= 0 ;
end
else
begin
sync_r1 <= primary_addr_gray_reg ;
primary_addr_gray_sync <= sync_r1 ;
end
end
// convert the synchronized primary address grey code back to binary
always
@(posedge secondary_clk_i or
posedge secondary_asreset_i)
begin
if ((secondary_asreset_i == 1'b1))
secondary_addr_o <= 0 ;
else
secondary_addr_o <= gray2bin(primary_addr_gray_sync) ;
end
endmodule
`timescale 1ns/1ps
// ===========================================================================
// $Version : v1.0
// $Date : 2022/04/26
// $Description: DRAM/ERAM infer logic
// ===========================================================================
module ram_infer_SOFTFIFO (clka,
rsta,
cea,
ocea,
wea,
dia,
addra,
doa,
clkb,
rstb,
ceb,
oceb,
web,
dib,
addrb,
dob) ;
//parameter
parameter MODE = "SDP" ; //SP, SDP, DP
parameter BYTE_SIZE = 8 ; //8, 9, 10
/* verilator lint_off UNUSEDPARAM */
parameter INIT_FILE = "" ; //memory initialization file which can be $readmemh, generated by software from .mif
/* verilator lint_off UNUSEDPARAM */
parameter INIT_VALUE = 0 ;
parameter USE_BYTE_WEA = 0 ; //0,1, use Byte Writes or not
parameter DATAWIDTH_A = 32 ; //A WIDTH
parameter WEA_WIDTH = ((USE_BYTE_WEA == 0) ? 1 : (DATAWIDTH_A / BYTE_SIZE)) ; //wea port width
parameter REGMODE_A = "NOREG" ; //OUTREG, NOREG
parameter RESETMODE_A = "ASYNC" ; //SYNC, ASYNC, ARSR
parameter INITVAL_A = {DATAWIDTH_A{1'b0}} ; //A initial value or reset value
parameter WRITEMODE_A = "NORMAL" ; //NORMAL, WRITETHROUGH, READBEFOREWRITE
parameter ADDRWIDTH_A = 5 ; //A ADDR WIDTH
parameter DATADEPTH_A = (2 ** ADDRWIDTH_A) ; //A DEPTH
parameter SSROVERCE_A = "ENABLE" ; //ENABLE, DISABLE
parameter USE_BYTE_WEB = USE_BYTE_WEA ; //0,1, use Byte Writes or not
parameter DATAWIDTH_B = DATAWIDTH_A ; //B WIDTH
parameter WEB_WIDTH = ((USE_BYTE_WEB == 0) ? 1 : (DATAWIDTH_B / BYTE_SIZE)) ; //web port width
parameter REGMODE_B = "NOREG" ; //OUTREG, NOREG
parameter RESETMODE_B = "ASYNC" ; //SYNC, ASYNC, ARSR
parameter INITVAL_B = {DATAWIDTH_B{1'b0}} ; //B initial value or reset value
parameter WRITEMODE_B = "NORMAL" ; //NORMAL, WRITETHROUGH, READBEFOREWRITE
parameter ADDRWIDTH_B = ADDRWIDTH_A ; //B ADDR WIDTH
parameter DATADEPTH_B = (2 ** ADDRWIDTH_B) ; //A DEPTH
parameter SSROVERCE_B = "ENABLE" ; //ENABLE, DISABLEi
//input
input clka,
rsta,
cea,
ocea ;
input [(WEA_WIDTH - 1):0] wea ;
input [(DATAWIDTH_A - 1):0] dia ;
input [(ADDRWIDTH_A - 1):0] addra ;
input clkb,
rstb,
ceb,
oceb ;
input [(WEB_WIDTH - 1):0] web ;
input [(DATAWIDTH_B - 1):0] dib ;
input [(ADDRWIDTH_B - 1):0] addrb ;
//output
output [(DATAWIDTH_A - 1):0] doa ;
output [(DATAWIDTH_B - 1):0] dob ;
// check parameters
//integer fp;
localparam MIN_WIDTH = ((DATAWIDTH_A > DATAWIDTH_B) ? DATAWIDTH_B : DATAWIDTH_A) ;
localparam MAX_DEPTH = ((DATADEPTH_A > DATADEPTH_B) ? DATADEPTH_A : DATADEPTH_B) ;
localparam WIDTHRATIO_A = (DATAWIDTH_A / MIN_WIDTH) ;
localparam WIDTHRATIO_B = (DATAWIDTH_B / MIN_WIDTH) ;
reg [(MIN_WIDTH - 1):0] memory [(MAX_DEPTH - 1):0] ; /* fehdl force_ram=1, ram_style="bram" */
reg [(DATAWIDTH_A - 1):0] doa_tmp = INITVAL_A ;
reg [(DATAWIDTH_B - 1):0] dob_tmp = INITVAL_B ;
reg [(DATAWIDTH_A - 1):0] doa_tmp2 = INITVAL_A ;
reg [(DATAWIDTH_B - 1):0] dob_tmp2 = INITVAL_B ;
/* verilator lint_off UNUSEDSIGNAL */
integer i ;
//Initial value
// if (INIT_FILE != "") begin
// initial $readmemb(INIT_FILE, memory);
// end else begin
// initial begin
// for(i=0; i<MAX_DEPTH; i=i+1) begin
// memory[i] <= INIT_VALUE;
// end
// end
// end
//write data
always
@(posedge clka)
begin
if (cea)
begin
write_a (addra,
dia,
wea) ;
end
end
always
@(posedge clkb)
begin
if (ceb)
begin
if ((MODE == "DP"))
begin
write_b (addrb,
dib,
web) ;
end
end
end
reg rsta_p1 = 1,
rsta_p2 = 1 ;
wire rsta_p3 = ((rsta_p2 | rsta_p1) | rsta) ;
always
@(posedge clka or
posedge rsta)
begin
if (rsta)
begin
rsta_p1 <= 1 ;
end
else
begin
rsta_p1 <= 0 ;
end
end
always
@(negedge clka)
begin
rsta_p2 <= rsta_p1 ;
end
//read data
wire sync_rsta = ((RESETMODE_A == "SYNC") && rsta) ;
wire async_rsta = ((RESETMODE_A == "ASYNC") ? rsta : ((RESETMODE_A == "ARSR") ? rsta_p3 : 0)) ;
wire ssroverce_a = ((SSROVERCE_A == "ENABLE") && sync_rsta) ;
/* verilator lint_off WIDTHEXPAND */
wire ceoverssr_a = ((SSROVERCE_A == "DISABLE") && sync_rsta) ;
always
@(posedge clka or
posedge async_rsta)
begin
if (async_rsta)
begin
doa_tmp2 <= INITVAL_A ;
end
else
if (ssroverce_a)
begin
doa_tmp2 <= INITVAL_A ;
end
else
if (ocea)
begin
if (ceoverssr_a)
begin
doa_tmp2 <= INITVAL_A ;
end
else
begin
doa_tmp2 <= doa_tmp ;
end
end
end
always
@(posedge clka or
posedge async_rsta)
begin
if (async_rsta)
begin
doa_tmp <= INITVAL_A ;
end
else
if (sync_rsta)
begin
doa_tmp <= INITVAL_A ;
end
else
begin
if (cea)
begin
if (((MODE == "SP") || (MODE == "DP")))
begin
read_a (addra,
dia,
wea) ;
end
end
end
end
reg rstb_p1 = 1,
rstb_p2 = 1 ;
wire rstb_p3 = ((rstb_p1 | rstb_p2) | rstb) ;
always
@(posedge clkb or
posedge rstb)
begin
if (rstb)
begin
rstb_p1 <= 1 ;
end
else
begin
rstb_p1 <= 0 ;
end
end
always
@(negedge clkb)
begin
rstb_p2 <= rstb_p1 ;
end
wire sync_rstb = ((RESETMODE_B == "SYNC") && rstb) ;
wire async_rstb = ((RESETMODE_B == "ASYNC") ? rstb : ((RESETMODE_B == "ARSR") ? rstb_p3 : 0)) ;
/* verilator lint_off WIDTHEXPAND */
wire ssroverce_b = ((SSROVERCE_B == "ENABLE") && sync_rstb) ;
wire ceoverssr_b = ((SSROVERCE_B == "DISABLE") && sync_rstb) ;
always
@(posedge clkb or
posedge async_rstb)
begin
if (async_rstb)
begin
dob_tmp2 <= INITVAL_B ;
end
else
if (ssroverce_b)
begin
dob_tmp2 <= INITVAL_B ;
end
else
if (oceb)
begin
if (ceoverssr_b)
begin
dob_tmp2 <= INITVAL_B ;
end
else
begin
dob_tmp2 <= dob_tmp ;
end
end
end
always
@(posedge clkb or
posedge async_rstb)
begin
if (async_rstb)
begin
dob_tmp <= INITVAL_B ;
end
else
if (sync_rstb)
begin
dob_tmp <= INITVAL_B ;
end
else
begin
if (ceb)
begin
if ((MODE == "DP"))
begin
read_b (addrb,
dib,
web) ;
end
else
if ((MODE == "SDP"))
begin
read_b (addrb,
dib,
1'b0) ;
end
end
end
end
assign doa = ((REGMODE_A == "OUTREG") ? doa_tmp2 : doa_tmp) ;
assign dob = ((REGMODE_B == "OUTREG") ? dob_tmp2 : dob_tmp) ;
task write_a(
input reg [(ADDRWIDTH_A - 1):0] addr,
input reg [(DATAWIDTH_A - 1):0] data,
input reg [(WEA_WIDTH - 1):0] we) ;
/* verilator lint_off VARHIDDEN */
integer i,
j ;
begin
if ((USE_BYTE_WEA != 0))
begin
for (i = 0 ; (i < WIDTHRATIO_A) ; i = (i + 1))
begin
for (j = 0 ; (j < (WEA_WIDTH / WIDTHRATIO_A)) ; j = (j + 1))
begin
if (we[(((i * WEA_WIDTH) / WIDTHRATIO_A) + j)])
begin
memory[((addr * WIDTHRATIO_A) + i)][(j * BYTE_SIZE) +: BYTE_SIZE] <= data[((i * MIN_WIDTH) + (j * BYTE_SIZE)) +: BYTE_SIZE] ;
end
end
end
end
else
begin
if (we)
begin
for (i = 0 ; (i < WIDTHRATIO_A) ; i = (i + 1))
begin
memory[((addr * WIDTHRATIO_A) + i)] <= data[(i * MIN_WIDTH) +: MIN_WIDTH] ;
end
end
end
end
endtask
task write_b(
input reg [(ADDRWIDTH_B - 1):0] addr,
input reg [(DATAWIDTH_B - 1):0] data,
input reg [(WEB_WIDTH - 1):0] we) ;
/* verilator lint_off VARHIDDEN */
integer i,
j ;
begin
if ((USE_BYTE_WEB != 0))
begin
for (i = 0 ; (i < WIDTHRATIO_B) ; i = (i + 1))
begin
for (j = 0 ; (j < (WEB_WIDTH / WIDTHRATIO_B)) ; j = (j + 1))
begin
if (we[(((i * WEB_WIDTH) / WIDTHRATIO_B) + j)])
begin
memory[((addr * WIDTHRATIO_B) + i)][(j * BYTE_SIZE) +: BYTE_SIZE] <= data[((i * MIN_WIDTH) + (j * BYTE_SIZE)) +: BYTE_SIZE] ;
end
end
end
end
else
begin
if (we)
begin
for (i = 0 ; (i < WIDTHRATIO_B) ; i = (i + 1))
begin
memory[((addr * WIDTHRATIO_B) + i)] <= data[(i * MIN_WIDTH) +: MIN_WIDTH] ;
end
end
end
end
endtask
task read_a(
input reg [(ADDRWIDTH_A - 1):0] addr,
input reg [(DATAWIDTH_A - 1):0] data,
input reg [(WEA_WIDTH - 1):0] we) ;
integer i,
j ;
if ((USE_BYTE_WEA != 0))
begin
if ((WRITEMODE_A == "NORMAL"))
begin
for (i = 0 ; (i < WIDTHRATIO_A) ; i = (i + 1))
begin
for (j = 0 ; (j < (WEA_WIDTH / WIDTHRATIO_A)) ; j = (j + 1))
begin
if ((!we[(((i * WEA_WIDTH) / WIDTHRATIO_A) + j)]))
begin
doa_tmp[((i * MIN_WIDTH) + (j * BYTE_SIZE)) +: BYTE_SIZE] <= memory[((addr * WIDTHRATIO_A) + i)][(j * BYTE_SIZE) +: BYTE_SIZE] ;
end
end
end
end
else
/* verilator lint_off WIDTHEXPAND */
if ((WRITEMODE_A == "WRITETHROUGH"))
begin
for (i = 0 ; (i < WIDTHRATIO_A) ; i = (i + 1))
begin
for (j = 0 ; (j < (WEA_WIDTH / WIDTHRATIO_A)) ; j = (j + 1))
begin
if (we[(((i * WEA_WIDTH) / WIDTHRATIO_A) + j)])
begin
doa_tmp[((i * MIN_WIDTH) + (j * BYTE_SIZE)) +: BYTE_SIZE] <= data[((i * MIN_WIDTH) + (j * BYTE_SIZE)) +: BYTE_SIZE] ;
end
else
begin
doa_tmp[((i * MIN_WIDTH) + (j * BYTE_SIZE)) +: BYTE_SIZE] <= memory[((addr * WIDTHRATIO_A) + i)][(j * BYTE_SIZE) +: BYTE_SIZE] ;
end
end
end
end
else
begin
for (i = 0 ; (i < WIDTHRATIO_A) ; i = (i + 1))
begin
doa_tmp[(MIN_WIDTH * i) +: MIN_WIDTH] <= memory[((addr * WIDTHRATIO_A) + i)] ;
end
end
end
else
begin
if ((WRITEMODE_A == "NORMAL"))
begin
if ((!we[0]))
begin
for (i = 0 ; (i < WIDTHRATIO_A) ; i = (i + 1))
begin
doa_tmp[(MIN_WIDTH * i) +: MIN_WIDTH] <= memory[((addr * WIDTHRATIO_A) + i)] ;
end
end
end
else
/* verilator lint_off WIDTHEXPAND */
if ((WRITEMODE_A == "WRITETHROUGH"))
begin
if (we[0])
begin
doa_tmp <= data ;
end
else
begin
for (i = 0 ; (i < WIDTHRATIO_A) ; i = (i + 1))
begin
doa_tmp[(MIN_WIDTH * i) +: MIN_WIDTH] <= memory[((addr * WIDTHRATIO_A) + i)] ;
end
end
end
else
begin
for (i = 0 ; (i < WIDTHRATIO_A) ; i = (i + 1))
begin
doa_tmp[(MIN_WIDTH * i) +: MIN_WIDTH] <= memory[((addr * WIDTHRATIO_A) + i)] ;
end
end
end
endtask
task read_b(
input reg [(ADDRWIDTH_B - 1):0] addr,
input reg [(DATAWIDTH_B - 1):0] data,
input reg [(WEB_WIDTH - 1):0] we) ;
integer i,
j ;
if ((USE_BYTE_WEB != 0))
begin
if ((WRITEMODE_B == "NORMAL"))
begin
for (i = 0 ; (i < WIDTHRATIO_B) ; i = (i + 1))
begin
for (j = 0 ; (j < (WEB_WIDTH / WIDTHRATIO_B)) ; j = (j + 1))
begin
if ((!we[(((i * WEB_WIDTH) / WIDTHRATIO_B) + j)]))
begin
dob_tmp[((i * MIN_WIDTH) + (j * BYTE_SIZE)) +: BYTE_SIZE] <= memory[((addr * WIDTHRATIO_B) + i)][(j * BYTE_SIZE) +: BYTE_SIZE] ;
end
end
end
end
else
if ((WRITEMODE_B == "WRITETHROUGH"))
begin
for (i = 0 ; (i < WIDTHRATIO_B) ; i = (i + 1))
begin
for (j = 0 ; (j < (WEB_WIDTH / WIDTHRATIO_B)) ; j = (j + 1))
begin
if (we[(((i * WEB_WIDTH) / WIDTHRATIO_B) + j)])
begin
dob_tmp[((i * MIN_WIDTH) + (j * BYTE_SIZE)) +: BYTE_SIZE] <= data[((i * MIN_WIDTH) + (j * BYTE_SIZE)) +: BYTE_SIZE] ;
end
else
begin
dob_tmp[((i * MIN_WIDTH) + (j * BYTE_SIZE)) +: BYTE_SIZE] <= memory[((addr * WIDTHRATIO_B) + i)][(j * BYTE_SIZE) +: BYTE_SIZE] ;
end
end
end
end
else
begin
for (i = 0 ; (i < WIDTHRATIO_B) ; i = (i + 1))
begin
dob_tmp[(MIN_WIDTH * i) +: MIN_WIDTH] <= memory[((addr * WIDTHRATIO_B) + i)] ;
end
end
end
else
begin
if ((WRITEMODE_B == "NORMAL"))
begin
if ((!we[0]))
begin
for (i = 0 ; (i < WIDTHRATIO_B) ; i = (i + 1))
begin
dob_tmp[(MIN_WIDTH * i) +: MIN_WIDTH] <= memory[((addr * WIDTHRATIO_B) + i)] ;
end
end
end
else
if ((WRITEMODE_B == "WRITETHROUGH"))
begin
if (we[0])
begin
dob_tmp <= data ;
end
else
begin
for (i = 0 ; (i < WIDTHRATIO_B) ; i = (i + 1))
begin
dob_tmp[(MIN_WIDTH * i) +: MIN_WIDTH] <= memory[((addr * WIDTHRATIO_B) + i)] ;
end
end
end
else
begin
for (i = 0 ; (i < WIDTHRATIO_B) ; i = (i + 1))
begin
dob_tmp[(MIN_WIDTH * i) +: MIN_WIDTH] <= memory[((addr * WIDTHRATIO_B) + i)] ;
end
end
end
endtask
endmodule

View File

@ -1,9 +0,0 @@
async_fifo.v
fifomem.v
fifomem_dp.v
hdl.list
rptr_empty.v
sync_ptr.v
sync_r2w.v
sync_w2r.v
wptr_full.v

View File

@ -1,98 +0,0 @@
// distributed under the mit license
// https://opensource.org/licenses/mit-license.php
`timescale 1 ns / 1 ps
`default_nettype none
module async_fifo
#(
parameter DSIZE = 8,
parameter ASIZE = 4,
parameter FALLTHROUGH = "TRUE" // First word fall-through without latency
)(
input wire wclk,
input wire wrst_n,
input wire winc,
input wire [DSIZE-1:0] wdata,
output wire wfull,
output wire awfull,
input wire rclk,
input wire rrst_n,
input wire rinc,
output wire [DSIZE-1:0] rdata,
output wire rempty,
output wire arempty
);
wire [ASIZE-1:0] waddr, raddr;
wire [ASIZE :0] wptr, rptr, wq2_rptr, rq2_wptr;
// The module synchronizing the read point
// from read to write domain
sync_r2w
#(ASIZE)
sync_r2w (
.wq2_rptr (wq2_rptr),
.rptr (rptr),
.wclk (wclk),
.wrst_n (wrst_n)
);
// The module synchronizing the write point
// from write to read domain
sync_w2r
#(ASIZE)
sync_w2r (
.rq2_wptr (rq2_wptr),
.wptr (wptr),
.rclk (rclk),
.rrst_n (rrst_n)
);
// The module handling the write requests
wptr_full
#(ASIZE)
wptr_full (
.awfull (awfull),
.wfull (wfull),
.waddr (waddr),
.wptr (wptr),
.wq2_rptr (wq2_rptr),
.winc (winc),
.wclk (wclk),
.wrst_n (wrst_n)
);
// The DC-RAM
fifomem
#(DSIZE, ASIZE, FALLTHROUGH)
fifomem (
.rclken (rinc),
.rclk (rclk),
.rdata (rdata),
.wdata (wdata),
.waddr (waddr),
.raddr (raddr),
.wclken (winc),
.wfull (wfull),
.wclk (wclk)
);
// The module handling read requests
rptr_empty
#(ASIZE)
rptr_empty (
.arempty (arempty),
.rempty (rempty),
.raddr (raddr),
.rptr (rptr),
.rq2_wptr (rq2_wptr),
.rinc (rinc),
.rclk (rclk),
.rrst_n (rrst_n)
);
endmodule
`resetall

View File

@ -1,52 +0,0 @@
// distributed under the mit license
// https://opensource.org/licenses/mit-license.php
`timescale 1 ns / 1 ps
`default_nettype none
module fifomem
#(
parameter DATASIZE = 8, // Memory data word width
parameter ADDRSIZE = 4, // Number of mem address bits
parameter FALLTHROUGH = "TRUE" // First word fall-through
) (
input wire wclk,
input wire wclken,
input wire [ADDRSIZE-1:0] waddr,
input wire [DATASIZE-1:0] wdata,
input wire wfull,
input wire rclk,
input wire rclken,
input wire [ADDRSIZE-1:0] raddr,
output wire [DATASIZE-1:0] rdata
);
localparam DEPTH = 1<<ADDRSIZE;
reg [DATASIZE-1:0] mem [0:DEPTH-1];
reg [DATASIZE-1:0] rdata_r;
always @(posedge wclk) begin
if (wclken && !wfull)
mem[waddr] <= wdata;
end
generate
if (FALLTHROUGH == "TRUE")
begin : fallthrough
assign rdata = mem[raddr];
end
else
begin : registered_read
always @(posedge rclk) begin
if (rclken)
rdata_r <= mem[raddr];
end
assign rdata = rdata_r;
end
endgenerate
endmodule
`resetall

View File

@ -1,95 +0,0 @@
//-----------------------------------------------------------------------------
// Copyright 2017 Damien Pretet ThotIP
// Copyright 2018 Julius Baxter
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//-----------------------------------------------------------------------------
`timescale 1 ns / 1 ps
`default_nettype none
module fifomem_dp
#(
parameter DATASIZE = 8, // Memory data word width
parameter ADDRSIZE = 4, // Number of mem address bits
parameter FALLTHROUGH = "TRUE" // First word fall-through
) (
input wire a_clk,
input wire [DATASIZE-1:0] a_wdata,
output wire [DATASIZE-1:0] a_rdata,
input wire [ADDRSIZE-1:0] a_addr,
input wire a_rinc,
input wire a_winc,
input wire b_clk,
input wire [DATASIZE-1:0] b_wdata,
output wire [DATASIZE-1:0] b_rdata,
input wire [ADDRSIZE-1:0] b_addr,
input wire b_rinc,
input wire b_winc
);
reg [DATASIZE-1:0] a_rdata_r;
reg [DATASIZE-1:0] b_rdata_r;
generate
localparam DEPTH = 1<<ADDRSIZE;
reg [DATASIZE-1:0] mem [0:DEPTH-1];
if (FALLTHROUGH == "TRUE") begin : fallthrough
always @(posedge a_clk)
if (a_winc)
mem[a_addr] <= a_wdata;
assign a_rdata = mem[a_addr];
always @(posedge b_clk)
if (b_winc)
mem[b_addr] <= b_wdata;
assign b_rdata = mem[b_addr];
end else begin : registered
wire a_en = a_rinc | a_winc;
always @(posedge a_clk)
if (a_en) begin
if (a_winc)
mem[a_addr] <= a_wdata;
a_rdata_r <= mem[a_addr];
end
assign a_rdata = a_rdata_r;
wire b_en = b_rinc | b_winc;
always @(posedge b_clk)
if (b_en) begin
if (b_winc)
mem[b_addr] <= b_wdata;
b_rdata_r <= mem[b_addr];
end
assign b_rdata = b_rdata_r;
end // block: registered
endgenerate
endmodule
`resetall

View File

@ -1,65 +0,0 @@
// distributed under the mit license
// https://opensource.org/licenses/mit-license.php
`timescale 1 ns / 1 ps
`default_nettype none
module rptr_empty
#(
parameter ADDRSIZE = 4
)(
input wire rclk,
input wire rrst_n,
input wire rinc,
input wire [ADDRSIZE :0] rq2_wptr,
output reg rempty,
output reg arempty,
output wire [ADDRSIZE-1:0] raddr,
output reg [ADDRSIZE :0] rptr
);
reg [ADDRSIZE:0] rbin;
wire [ADDRSIZE:0] rgraynext, rbinnext, rgraynextm1;
wire arempty_val, rempty_val;
//-------------------
// GRAYSTYLE2 pointer
//-------------------
always @(posedge rclk or negedge rrst_n) begin
if (!rrst_n)
{rbin, rptr} <= 0;
else
{rbin, rptr} <= {rbinnext, rgraynext};
end
// Memory read-address pointer (okay to use binary to address memory)
assign raddr = rbin[ADDRSIZE-1:0];
assign rbinnext = rbin + {{(ADDRSIZE - 1){1'b0}},(rinc & ~rempty)};
assign rgraynext = (rbinnext >> 1) ^ rbinnext;
assign rgraynextm1 = ((rbinnext + 1'b1) >> 1) ^ (rbinnext + 1'b1);
//---------------------------------------------------------------
// FIFO empty when the next rptr == synchronized wptr or on reset
//---------------------------------------------------------------
assign rempty_val = (rgraynext == rq2_wptr);
assign arempty_val = (rgraynextm1 == rq2_wptr);
always @ (posedge rclk or negedge rrst_n) begin
if (!rrst_n) begin
arempty <= 1'b0;
rempty <= 1'b1;
end
else begin
arempty <= arempty_val;
rempty <= rempty_val;
end
end
endmodule
`resetall

View File

@ -1,30 +0,0 @@
// distributed under the mit license
// https://opensource.org/licenses/mit-license.php
`timescale 1 ns / 1 ps
`default_nettype none
module sync_ptr
#(
parameter ASIZE = 4
)(
input wire dest_clk,
input wire dest_rst_n,
input wire [ASIZE:0] src_ptr,
output reg [ASIZE:0] dest_ptr
);
reg [ASIZE:0] ptr_x;
always @(posedge dest_clk or negedge dest_rst_n) begin
if (!dest_rst_n)
{dest_ptr,ptr_x} <= 0;
else
{dest_ptr,ptr_x} <= {ptr_x,src_ptr};
end
endmodule
`resetall

View File

@ -1,31 +0,0 @@
// distributed under the mit license
// https://opensource.org/licenses/mit-license.php
`timescale 1 ns / 1 ps
`default_nettype none
module sync_r2w
#(
parameter ASIZE = 4
)(
input wire wclk,
input wire wrst_n,
input wire [ASIZE:0] rptr,
output reg [ASIZE:0] wq2_rptr
);
reg [ASIZE:0] wq1_rptr;
always @(posedge wclk or negedge wrst_n) begin
if (!wrst_n)
{wq2_rptr,wq1_rptr} <= 0;
else
{wq2_rptr,wq1_rptr} <= {wq1_rptr,rptr};
end
endmodule
`resetall

View File

@ -1,31 +0,0 @@
// distributed under the mit license
// https://opensource.org/licenses/mit-license.php
`timescale 1 ns / 1 ps
`default_nettype none
module sync_w2r
#(
parameter ASIZE = 4
)(
input wire rclk,
input wire rrst_n,
output reg [ASIZE:0] rq2_wptr,
input wire [ASIZE:0] wptr
);
reg [ASIZE:0] rq1_wptr;
always @(posedge rclk or negedge rrst_n) begin
if (!rrst_n)
{rq2_wptr,rq1_wptr} <= 0;
else
{rq2_wptr,rq1_wptr} <= {rq1_wptr,wptr};
end
endmodule
`resetall

View File

@ -1,65 +0,0 @@
// distributed under the mit license
// https://opensource.org/licenses/mit-license.php
`timescale 1 ns / 1 ps
`default_nettype none
module wptr_full
#(
parameter ADDRSIZE = 4
)(
input wire wclk,
input wire wrst_n,
input wire winc,
input wire [ADDRSIZE :0] wq2_rptr,
output reg wfull,
output reg awfull,
output wire [ADDRSIZE-1:0] waddr,
output reg [ADDRSIZE :0] wptr
);
reg [ADDRSIZE:0] wbin;
wire [ADDRSIZE:0] wgraynext, wbinnext, wgraynextp1;
wire awfull_val, wfull_val;
// GRAYSTYLE2 pointer
always @(posedge wclk or negedge wrst_n) begin
if (!wrst_n)
{wbin, wptr} <= 0;
else
{wbin, wptr} <= {wbinnext, wgraynext};
end
// Memory write-address pointer (okay to use binary to address memory)
assign waddr = wbin[ADDRSIZE-1:0];
assign wbinnext = wbin + {{(ADDRSIZE - 1){1'b0}}, (winc & ~wfull) };
assign wgraynext = (wbinnext >> 1) ^ wbinnext;
assign wgraynextp1 = ((wbinnext + 1'b1) >> 1) ^ (wbinnext + 1'b1);
//------------------------------------------------------------------
// Simplified version of the three necessary full-tests:
// assign wfull_val=((wgnext[ADDRSIZE] !=wq2_rptr[ADDRSIZE] ) &&
// (wgnext[ADDRSIZE-1] !=wq2_rptr[ADDRSIZE-1]) &&
// (wgnext[ADDRSIZE-2:0]==wq2_rptr[ADDRSIZE-2:0]));
//------------------------------------------------------------------
assign wfull_val = (wgraynext == {~wq2_rptr[ADDRSIZE:ADDRSIZE-1],wq2_rptr[ADDRSIZE-2:0]});
assign awfull_val = (wgraynextp1 == {~wq2_rptr[ADDRSIZE:ADDRSIZE-1],wq2_rptr[ADDRSIZE-2:0]});
always @(posedge wclk or negedge wrst_n) begin
if (!wrst_n) begin
awfull <= 1'b0;
wfull <= 1'b0;
end else begin
awfull <= awfull_val;
wfull <= wfull_val;
end
end
endmodule
`resetall

View File

@ -12,15 +12,34 @@ module chanels_to_RGB #(
input [15:0] data_in [2:0], // 0:R 1:G 2:B input [15:0] data_in [2:0], // 0:R 1:G 2:B
// 输出相关 // 输出相关
input data_que, // 数据请求 input out_que, // 数据请求
output out_en, output out_en,
output [3 * OUT_DEPTH - 1:0] data_out output [3 * OUT_DEPTH - 1:0] data_out
); );
localparam READ_DATA = 0;
localparam SEND_DATA = 1;
reg [1:0] state, nextState;
reg [31:0] data_cal [2:0]; // 用于保存运算结果防止溢出 reg [31:0] data_cal [2:0]; // 用于保存运算结果防止溢出
reg fifo_en; reg fifo_en;
reg [3 * OUT_DEPTH - 1:0] fifo_in; // 输入fifo中缓存 reg [3 * OUT_DEPTH - 1:0] fifo_in; // 输入fifo中缓存
wire fifo_empty; wire fifo_empty, fifo_que;
// wire fifo_alempty;
always @(posedge clk or posedge reset) begin
if (reset) begin
state <= READ_DATA;
end
else begin
state <= nextState;
end
end
always @(*) begin
case (state)
READ_DATA: nextState = (in_en) ? SEND_DATA : READ_DATA;
SEND_DATA: nextState = READ_DATA;
endcase
end
always @(posedge clk or posedge reset) begin always @(posedge clk or posedge reset) begin
if (reset) begin if (reset) begin
@ -32,43 +51,52 @@ module chanels_to_RGB #(
fifo_in <= 0; fifo_in <= 0;
end end
else begin else begin
if (in_en) begin case (state)
data_cal[0] <= data_in[0] * OUT_DEPTH / IN_DEPTH; READ_DATA: begin
data_cal[1] <= data_in[1] * OUT_DEPTH / IN_DEPTH; fifo_en <= 0;
data_cal[2] <= data_in[2] * OUT_DEPTH / IN_DEPTH;
if (in_en) begin
data_cal[0] <= data_in[0] * OUT_DEPTH / IN_DEPTH;
data_cal[1] <= data_in[1] * OUT_DEPTH / IN_DEPTH;
data_cal[2] <= data_in[2] * OUT_DEPTH / IN_DEPTH;
fifo_in <= {data_cal[0][OUT_DEPTH - 1:0], data_cal[1][OUT_DEPTH - 1:0],data_cal[2][OUT_DEPTH - 1:0]}; end
// data_out <= {data_cal[0][OUT_DEPTH - 1:0], data_cal[1][OUT_DEPTH - 1:0],data_cal[2][OUT_DEPTH - 1:0]}; end
end
fifo_en <= in_en; SEND_DATA: begin
fifo_en <= 1;
fifo_in <= {data_cal[0][OUT_DEPTH - 1:0], data_cal[1][OUT_DEPTH - 1:0],data_cal[2][OUT_DEPTH - 1:0]};
end
endcase
end end
end end
// 存在数据请求且FIFO不为空时才发送数据 // 存在数据请求且FIFO不为空时才发送数据
assign out_en = (data_que && !fifo_empty) ? 1 : 0; assign fifo_que = (out_que && !fifo_empty) ? 1 : 0;
async_fifo #( SOFTFIFO #(
.DSIZE(3 * OUT_DEPTH), .DATA_WIDTH_W(3 * OUT_DEPTH),
.ASIZE(4), .DATA_WIDTH_R(3 * OUT_DEPTH)
.FALLTHROUGH("False")
) RGB_FIFO ( ) RGB_FIFO (
.wclk(clk), .rst(reset), //asynchronous port,active hight
.rclk(clk), .clkw(clk), //write clock
.wrst_n(reset), .clkr(clk), //read clock
.rrst_n(reset), .we(fifo_en), //write enable,active hight
.di(fifo_in), //write data
.winc(fifo_en), .re(fifo_que), //read enable,active hight
.wdata(fifo_in), .dout(data_out), //read data
/* verilator lint_off PINCONNECTEMPTY */ .valid(out_en), //read data valid flag
.wfull(), /* verilator lint_off PINCONNECTEMPTY */
/* verilator lint_off PINCONNECTEMPTY */ .full_flag(), //fifo full flag
.awfull(), .empty_flag(fifo_empty), //fifo empty flag
/* verilator lint_off PINCONNECTEMPTY */
/* verilator lint_off PINCONNECTEMPTY */ .afull(), //fifo almost full flag
.arempty(), /* verilator lint_off PINCONNECTEMPTY */
.rempty(fifo_empty), .aempty(), //fifo almost empty flag
.rdata(data_out), /* verilator lint_off PINCONNECTEMPTY */
.rinc(out_en) .wrusedw(), //stored data number in fifo
/* verilator lint_off PINCONNECTEMPTY */
.rdusedw() //available data number for read
); );
endmodule endmodule

2
isp.v
View File

@ -60,7 +60,7 @@ module isp #(
.in_en(rgb_en), .in_en(rgb_en),
.data_in({im_red, im_green, im_blue}), .data_in({im_red, im_green, im_blue}),
.data_que(scale_in_que), .out_que(scale_in_que),
.out_en(scale_in_en), .out_en(scale_in_en),
.data_out(scale_in_data) .data_out(scale_in_data)
); );

View File

@ -65,6 +65,9 @@ SC_MODULE (TB_ISP) {
data_out[1].write(image[( pos_y + 1 ) * IM_WIDTH + pos_x]); data_out[1].write(image[( pos_y + 1 ) * IM_WIDTH + pos_x]);
data_out[2].write(image[( pos_y + 2 ) * IM_WIDTH + pos_x]); data_out[2].write(image[( pos_y + 2 ) * IM_WIDTH + pos_x]);
wait(1);
data_en.write(0);
if (pos_x++ >= IM_WIDTH) { if (pos_x++ >= IM_WIDTH) {
pos_x = 0; pos_x = 0;
pos_y++; pos_y++;
@ -101,7 +104,7 @@ int sc_main(int argc, char* argv[]) {
// Open image // Open image
ifstream in_image; ifstream in_image;
ofstream out_image; ofstream out_image;
in_image.open("./Demosaic/sim/transform/test.bin", ios::in | ios::binary); in_image.open("../Demosaic/sim/transform/test.bin", ios::in | ios::binary);
out_image.open("./out.bin", ios::out | ios::binary); out_image.open("./out.bin", ios::out | ios::binary);
if (!in_image.is_open()) { if (!in_image.is_open()) {
cout << "Open image fail" << endl; cout << "Open image fail" << endl;
@ -113,6 +116,7 @@ int sc_main(int argc, char* argv[]) {
// Read image // Read image
// uint8_t buf[IM_SIZE * 2] = {0}; // uint8_t buf[IM_SIZE * 2] = {0};
auto buf = make_unique<uint8_t[]>(2 * IM_SIZE); auto buf = make_unique<uint8_t[]>(2 * IM_SIZE);
// vector<vector<uint8_t>> buf(IM_HEIGHT, vector<uint8_t>(IM_WIDTH, 0));
in_image.read((char*)buf.get(), IM_SIZE * 2); in_image.read((char*)buf.get(), IM_SIZE * 2);
in_image.close(); in_image.close();
// Reshape data // Reshape data