finish sim
This commit is contained in:
parent
5eebe6e922
commit
d345fed4e7
|
@ -10,4 +10,5 @@
|
|||
*.tif
|
||||
*.bin
|
||||
*.dat
|
||||
*.png
|
||||
*.png
|
||||
!im.tif
|
|
@ -1,114 +0,0 @@
|
|||
######################################################################
|
||||
#
|
||||
# DESCRIPTION: Verilator Example: Small Makefile
|
||||
#
|
||||
# This calls the object directory makefile. That allows the objects to
|
||||
# be placed in the "current directory" which simplifies the Makefile.
|
||||
#
|
||||
# This file ONLY is placed under the Creative Commons Public Domain, for
|
||||
# any use, without warranty, 2020 by Wilson Snyder.
|
||||
# SPDX-License-Identifier: CC0-1.0
|
||||
#
|
||||
######################################################################
|
||||
# Check for sanity to avoid later confusion
|
||||
|
||||
ifneq ($(words $(CURDIR)),1)
|
||||
$(error Unsupported: GNU Make cannot build in directories containing spaces, build elsewhere: '$(CURDIR)')
|
||||
endif
|
||||
|
||||
######################################################################
|
||||
# Set up variables
|
||||
|
||||
# If $VERILATOR_ROOT isn't in the environment, we assume it is part of a
|
||||
# package install, and verilator is in your path. Otherwise find the
|
||||
# binary relative to $VERILATOR_ROOT (such as when inside the git sources).
|
||||
ifeq ($(VERILATOR_ROOT),)
|
||||
VERILATOR = verilator
|
||||
VERILATOR_COVERAGE = verilator_coverage
|
||||
else
|
||||
export VERILATOR_ROOT
|
||||
VERILATOR = $(VERILATOR_ROOT)/bin/verilator
|
||||
VERILATOR_COVERAGE = $(VERILATOR_ROOT)/bin/verilator_coverage
|
||||
endif
|
||||
|
||||
VERILATOR_FLAGS =
|
||||
# Generate SystemC in executable form
|
||||
VERILATOR_FLAGS += -sc --exe
|
||||
# Generate makefile dependencies (not shown as complicates the Makefile)
|
||||
#VERILATOR_FLAGS += -MMD
|
||||
# Optimize
|
||||
# VERILATOR_FLAGS += -x-assign fast
|
||||
# Warn abount lint issues; may not want this on less solid designs
|
||||
VERILATOR_FLAGS += -Wall
|
||||
# Make waveforms
|
||||
VERILATOR_FLAGS += --trace
|
||||
# Check SystemVerilog assertions
|
||||
VERILATOR_FLAGS += --assert
|
||||
# Generate coverage analysis
|
||||
# VERILATOR_FLAGS += --coverage
|
||||
# Run Verilator in debug mode
|
||||
#VERILATOR_FLAGS += --debug
|
||||
# Add this trace to get a backtrace in gdb
|
||||
#VERILATOR_FLAGS += --gdbbt
|
||||
# Specify top module
|
||||
TOP_MODULE = demosaic2
|
||||
VERILATOR_FLAGS += -top $(TOP_MODULE)
|
||||
|
||||
# Input files for Verilator
|
||||
VERILATOR_INPUT = ../demosaic2.v sc_demosaic.cpp
|
||||
|
||||
# Check if SC exists via a verilator call (empty if not)
|
||||
SYSTEMC_EXISTS := $(shell $(VERILATOR) --get-supported SYSTEMC)
|
||||
|
||||
######################################################################
|
||||
|
||||
ifneq ($(SYSTEMC_EXISTS),)
|
||||
default: run
|
||||
else
|
||||
default: nosc
|
||||
endif
|
||||
|
||||
run:
|
||||
@echo
|
||||
@echo "-- Verilator tracing example"
|
||||
|
||||
@echo
|
||||
@echo "-- VERILATE ----------------"
|
||||
$(VERILATOR) $(VERILATOR_FLAGS) $(VERILATOR_INPUT)
|
||||
|
||||
@echo
|
||||
@echo "-- COMPILE -----------------"
|
||||
# To compile, we can either
|
||||
# 1. Pass --build to Verilator by editing VERILATOR_FLAGS above.
|
||||
# 2. Or, run the make rules Verilator does:
|
||||
# $(MAKE) -j -C obj_dir -f Vtop.mk
|
||||
# 3. Or, call a submakefile where we can override the rules ourselves:
|
||||
$(MAKE) -j -C obj_dir -f V$(TOP_MODULE).mk
|
||||
|
||||
@echo
|
||||
@echo "-- RUN ---------------------"
|
||||
@rm -rf logs
|
||||
@mkdir -p logs
|
||||
obj_dir/V$(TOP_MODULE) +trace
|
||||
|
||||
@echo
|
||||
@echo "-- DONE --------------------"
|
||||
@echo "To see waveforms, open vlt_dump.vcd in a waveform viewer"
|
||||
@echo
|
||||
|
||||
|
||||
######################################################################
|
||||
# Other targets
|
||||
|
||||
nosc:
|
||||
@echo
|
||||
@echo "%Skip: SYSTEMC_INCLUDE not in environment"
|
||||
@echo "(If you have SystemC see the README, and rebuild Verilator)"
|
||||
@echo
|
||||
|
||||
show-config:
|
||||
$(VERILATOR) -V
|
||||
|
||||
maintainer-copy::
|
||||
clean mostlyclean distclean maintainer-clean::
|
||||
-rm -rf obj_dir logs *.log *.dmp *.vpd coverage.dat core
|
|
@ -1,208 +0,0 @@
|
|||
// For std::unique_ptr
|
||||
#include <memory>
|
||||
|
||||
// SystemC global header
|
||||
#include <systemc>
|
||||
|
||||
// Include common routines
|
||||
#include <sys/stat.h> // mkdir
|
||||
#include <verilated.h>
|
||||
#include <verilated_vcd_sc.h>
|
||||
|
||||
// Include model header, generated from Verilating "demo.v"
|
||||
#include "Vdemosaic2.h"
|
||||
|
||||
// Handle file
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
|
||||
#define IM_WIDTH 512
|
||||
#define IM_HEIGHT 256
|
||||
#define IM_SIZE (IM_WIDTH * IM_HEIGHT)
|
||||
|
||||
using namespace std;
|
||||
using namespace sc_core;
|
||||
using namespace sc_dt;
|
||||
|
||||
int sc_main(int argc, char* argv[]) {
|
||||
// Open image
|
||||
ifstream in_image;
|
||||
ofstream out_image;
|
||||
in_image.open("./transform/test.bin", ios::in | ios::binary);
|
||||
out_image.open("./transform/out.bin", ios::out | ios::binary);
|
||||
if (!in_image.is_open()) {
|
||||
cout << "Open image fail" << endl;
|
||||
exit(0);
|
||||
} else {
|
||||
cout << "Ready to sim" << endl;
|
||||
}
|
||||
|
||||
// Read image
|
||||
uint8_t buf[IM_SIZE * 2] = {0};
|
||||
in_image.read((char*)buf, IM_SIZE * 2);
|
||||
// for (uint32_t i = 0; i < IM_SIZE * 2; i++)
|
||||
// printf("0x%02x\t", buf[i]);
|
||||
in_image.close();
|
||||
// Reshape data
|
||||
uint16_t image[IM_HEIGHT][IM_WIDTH] = {0};
|
||||
uint32_t i = 0;
|
||||
for (int y = 0; y < IM_HEIGHT; y++) {
|
||||
for (int x = 0; x < IM_WIDTH; x++) {
|
||||
image[y][x] = (uint16_t)buf[i] + ((uint16_t)buf[i + 1] << 8);
|
||||
i++;
|
||||
}
|
||||
}
|
||||
|
||||
// This is a more complicated example, please also see the simpler
|
||||
// examples/make_hello_c.
|
||||
|
||||
// Create logs/ directory in case we have traces to put under it
|
||||
Verilated::mkdir("logs");
|
||||
|
||||
// Set debug level, 0 is off, 9 is highest presently used
|
||||
// May be overridden by commandArgs argument parsing
|
||||
Verilated::debug(0);
|
||||
|
||||
// Randomization reset policy
|
||||
// May be overridden by commandArgs argument parsing
|
||||
Verilated::randReset(2);
|
||||
|
||||
// Before any evaluation, need to know to calculate those signals only used
|
||||
// for tracing
|
||||
Verilated::traceEverOn(true);
|
||||
|
||||
// Pass arguments so Verilated code can see them, e.g. $value$plusargs
|
||||
// This needs to be called before you create any model
|
||||
Verilated::commandArgs(argc, argv);
|
||||
|
||||
// General logfile
|
||||
std::ios::sync_with_stdio();
|
||||
|
||||
// Define clocks
|
||||
sc_clock clk{"clk", 10, SC_NS, 0.5, 3, SC_NS, true};
|
||||
|
||||
// Define interconnect
|
||||
sc_signal<bool> reset;
|
||||
|
||||
sc_signal<bool> in_en;
|
||||
sc_signal<bool> in_que;
|
||||
sc_signal<uint32_t> data_in[3];
|
||||
|
||||
sc_signal<bool> out_en;
|
||||
sc_signal<uint32_t> out_r, out_g, out_b;
|
||||
|
||||
// Construct the Verilated model, from inside Vtop.h
|
||||
// Using unique_ptr is similar to "Vtop* top = new Vtop" then deleting at
|
||||
// end
|
||||
const std::unique_ptr<Vdemosaic2> demo{new Vdemosaic2{"demo"}};
|
||||
|
||||
// Attach Vtop's signals to this upper model
|
||||
demo->clk(clk);
|
||||
demo->reset(reset);
|
||||
demo->data_en(in_en);
|
||||
demo->data_que(in_que);
|
||||
demo->data_in[0](data_in[0]);
|
||||
demo->data_in[1](data_in[1]);
|
||||
demo->data_in[2](data_in[2]);
|
||||
demo->out_en(out_en);
|
||||
demo->out_r(out_r);
|
||||
demo->out_g(out_g);
|
||||
demo->out_b(out_b);
|
||||
|
||||
// You must do one evaluation before enabling waves, in order to allow
|
||||
// SystemC to interconnect everything for testing.
|
||||
sc_start(SC_ZERO_TIME);
|
||||
|
||||
// If verilator was invoked with --trace argument,
|
||||
// and if at run time passed the +trace argument, turn on tracing
|
||||
VerilatedVcdSc* tfp = nullptr;
|
||||
const char* flag = Verilated::commandArgsPlusMatch("trace");
|
||||
if (flag && 0 == std::strcmp(flag, "+trace")) {
|
||||
std::cout << "Enabling waves into logs/vlt_dump.vcd...\n";
|
||||
tfp = new VerilatedVcdSc;
|
||||
demo->trace(tfp, 99); // Trace 99 levels of hierarchy
|
||||
Verilated::mkdir("logs");
|
||||
tfp->open("logs/vlt_dump.vcd");
|
||||
}
|
||||
|
||||
// Simulate until $finish
|
||||
bool flag_posedge = 0;
|
||||
bool clk_last = 0, clk_now = 0;
|
||||
uint16_t pos_x = 0, pos_y = 0;
|
||||
uint16_t out[IM_SIZE] = {0};
|
||||
uint32_t out_head = 0;
|
||||
while (!Verilated::gotFinish()) {
|
||||
// Flush the wave files each cycle so we can immediately see the output
|
||||
// Don't do this in "real" programs, do it in an abort() handler instead
|
||||
if (tfp) tfp->flush();
|
||||
|
||||
// Apply inputs
|
||||
if (sc_time_stamp() < sc_time(10, SC_NS)) {
|
||||
reset.write(1); // Assert reset
|
||||
} else {
|
||||
reset.write(0); // Deassert reset
|
||||
}
|
||||
|
||||
// Clock posedge generatre
|
||||
clk_now = clk.read();
|
||||
if (!clk_last && clk_now)
|
||||
flag_posedge = 1;
|
||||
clk_last = clk_now;
|
||||
|
||||
// Send image data and Read RGB image data
|
||||
if (sc_time_stamp() > sc_time(10, SC_NS) && flag_posedge) {
|
||||
flag_posedge = 0;
|
||||
// Send image data to demosaic
|
||||
if (in_que.read() && pos_y < IM_HEIGHT - 2) {
|
||||
in_en.write(1);
|
||||
|
||||
printf("x=%3d, y=%3d, data=0x%04x\t", pos_x, pos_y, image[pos_y + 0][pos_x]);
|
||||
printf("x=%3d, y=%3d, data=0x%04x\t", pos_x, pos_y, image[pos_y + 1][pos_x]);
|
||||
printf("x=%3d, y=%3d, data=0x%04x\n", pos_x, pos_y, image[pos_y + 2][pos_x]);
|
||||
|
||||
data_in[0].write(image[pos_y + 0][pos_x++]);
|
||||
data_in[1].write(image[pos_y + 1][pos_x++]);
|
||||
data_in[2].write(image[pos_y + 2][pos_x++]);
|
||||
|
||||
if (pos_x >= IM_WIDTH) {
|
||||
pos_x = 0;
|
||||
pos_y++;
|
||||
}
|
||||
} else {
|
||||
in_en.write(0);
|
||||
}
|
||||
|
||||
// Read image data
|
||||
if (out_en.read()) {
|
||||
out[out_head++] = ((uint8_t)(out_r.read() * 5 / 12) << 10) +
|
||||
((uint8_t)(out_g.read() * 5 / 12) << 5) +
|
||||
((uint8_t)(out_b.read() * 5 / 12) << 0);
|
||||
}
|
||||
}
|
||||
|
||||
if (sc_time_stamp() > sc_time(2600, SC_US))
|
||||
break;
|
||||
// Simulate 1ns
|
||||
sc_start(1, SC_NS);
|
||||
}
|
||||
|
||||
// Final model cleanup
|
||||
demo->final();
|
||||
|
||||
// Close trace if opened
|
||||
if (tfp) {
|
||||
tfp->close();
|
||||
tfp = nullptr;
|
||||
}
|
||||
|
||||
// Save final output image
|
||||
for (uint32_t i = 0; i < IM_SIZE; i++) {
|
||||
buf[i * 2] = (out[i] & 0xffff0000) >> 16;
|
||||
buf[i * 2 + 1] = (out[i] & 0x0000ffff);
|
||||
}
|
||||
out_image.write((const char*)buf, 2 * IM_SIZE);
|
||||
out_image.close();
|
||||
|
||||
// Return good completion status
|
||||
return 0;
|
||||
}
|
|
@ -1,169 +0,0 @@
|
|||
`timescale 1ns/10ps
|
||||
`define End_CYCLE 100000000
|
||||
`define cycle 40.0
|
||||
|
||||
`define PAT "./test.dat"
|
||||
`define OUT_F "./test.raw"
|
||||
|
||||
module tb_demosaic();
|
||||
|
||||
parameter WIDTH = 512;
|
||||
parameter HEIGHT = 256;
|
||||
parameter IMG_SIZE = WIDTH * HEIGHT;
|
||||
|
||||
integer out_f, i, in_count, cycle_count;
|
||||
|
||||
reg clk;
|
||||
reg reset;
|
||||
reg in_en;
|
||||
reg flag;
|
||||
wire wr_r, wr_g, wr_b;
|
||||
wire done;
|
||||
wire [13:0] addr_r, addr_g, addr_b;
|
||||
wire [7:0] wdata_r, wdata_g, wdata_b;
|
||||
reg [7:0] pixel, rdata_r, rdata_g, rdata_b;
|
||||
|
||||
reg [7:0] PAT [0:IMG_SIZE-1];
|
||||
reg [7:0] MEM_R [0:IMG_SIZE-1];
|
||||
reg [7:0] MEM_G [0:IMG_SIZE-1];
|
||||
reg [7:0] MEM_B [0:IMG_SIZE-1];
|
||||
|
||||
demosaic #(
|
||||
WIDTH,
|
||||
HEIGHT
|
||||
) u_demosaic (
|
||||
.clk(clk),
|
||||
.reset(reset),
|
||||
.in_en(in_en),
|
||||
.data_in(pixel),
|
||||
.wr_r(wr_r),
|
||||
.addr_r(addr_r),
|
||||
.wdata_r(wdata_r),
|
||||
.rdata_r(rdata_r),
|
||||
.wr_g(wr_g),
|
||||
.addr_g(addr_g),
|
||||
.wdata_g(wdata_g),
|
||||
.rdata_g(rdata_g),
|
||||
.wr_b(wr_b),
|
||||
.addr_b(addr_b),
|
||||
.wdata_b(wdata_b),
|
||||
.rdata_b(rdata_b),
|
||||
.done(done)
|
||||
);
|
||||
|
||||
initial begin
|
||||
out_f = $fopen(`OUT_F, "wb");
|
||||
end
|
||||
|
||||
initial begin
|
||||
$readmemh(`PAT, PAT);
|
||||
end
|
||||
|
||||
initial begin
|
||||
clk = 0;
|
||||
reset = 0;
|
||||
in_en = 0;
|
||||
in_count = 0;
|
||||
cycle_count = 0;
|
||||
pixel = 'hx;
|
||||
rdata_r = 'hx;
|
||||
rdata_g = 'hx;
|
||||
rdata_b = 'hx;
|
||||
flag = 0;
|
||||
for(i = 0; i < IMG_SIZE; i = i + 1) begin
|
||||
MEM_R[i] = 0;
|
||||
MEM_G[i] = 0;
|
||||
MEM_B[i] = 0;
|
||||
end
|
||||
end
|
||||
|
||||
always #(`cycle/2) clk = ~clk;
|
||||
|
||||
initial begin
|
||||
$display("********************************************************************");
|
||||
$display("** Simulation Start **");
|
||||
$display("********************************************************************");
|
||||
@(posedge clk); #2 reset = 1'b1;
|
||||
#(`cycle*2);
|
||||
@(posedge clk); #2 reset = 1'b0;
|
||||
end
|
||||
|
||||
initial begin
|
||||
@(posedge clk);
|
||||
# (`cycle*3) flag = 1;
|
||||
end
|
||||
|
||||
always @ (negedge clk or posedge reset) begin // send mosaic image
|
||||
if(reset) begin
|
||||
pixel <= 0;
|
||||
in_en <= 0;
|
||||
end
|
||||
else begin
|
||||
if(flag) begin
|
||||
if(in_count <= IMG_SIZE-1) begin
|
||||
in_en <= 1;
|
||||
in_count <= in_count + 1;
|
||||
pixel <= PAT[in_count];
|
||||
end
|
||||
else begin
|
||||
in_en <= 0;
|
||||
pixel <= 'hx;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
always @ (negedge clk) begin // read memory, send data to module
|
||||
if(!wr_r)
|
||||
rdata_r <= MEM_R[addr_r];
|
||||
else
|
||||
rdata_r <= 'hx;
|
||||
if(!wr_g)
|
||||
rdata_g <= MEM_G[addr_g];
|
||||
else
|
||||
rdata_g <= 'hx;
|
||||
if(!wr_b)
|
||||
rdata_b <= MEM_B[addr_b];
|
||||
else
|
||||
rdata_b <= 'hx;
|
||||
end
|
||||
|
||||
always @ (negedge clk) begin // write memory, read data and save
|
||||
if(wr_r) begin
|
||||
MEM_R[addr_r] <= wdata_r;
|
||||
end
|
||||
if(wr_g) begin
|
||||
MEM_G[addr_g] <= wdata_g;
|
||||
end
|
||||
if(wr_b) begin
|
||||
MEM_B[addr_b] <= wdata_b;
|
||||
end
|
||||
end
|
||||
|
||||
always @ (posedge clk) begin // count cycle
|
||||
cycle_count <= cycle_count + 1;
|
||||
if(cycle_count >= `End_CYCLE) begin
|
||||
$display("********************************************************************");
|
||||
$display("** Fail waiting done signal **");
|
||||
$display("** You can increase END_CYCLE by yourself **");
|
||||
$display("********************************************************************");
|
||||
$finish;
|
||||
end
|
||||
end
|
||||
|
||||
always @ (posedge clk) begin // check result
|
||||
if(done) begin
|
||||
for(i = 0; i < IMG_SIZE; i = i + 1) begin
|
||||
$fwrite(out_f, "%c", MEM_R[i]);
|
||||
$fwrite(out_f, "%c", MEM_G[i]);
|
||||
$fwrite(out_f, "%c", MEM_B[i]);
|
||||
end
|
||||
$fclose(out_f);
|
||||
$display("********************************************************************");
|
||||
$display("** Simulation completed successfully! **");
|
||||
$display("********************************************************************");
|
||||
$finish;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
6
isp.v
6
isp.v
|
@ -1,8 +1,8 @@
|
|||
`timescale 1ns/1ps
|
||||
|
||||
module isp #(
|
||||
parameter IN_WIDTH = 1936,
|
||||
parameter IN_HEIGHT = 1088,
|
||||
parameter IN_WIDTH = 700,
|
||||
parameter IN_HEIGHT = 500,
|
||||
parameter OUT_WIDTH = 640,
|
||||
parameter OUT_HEIGHT = 480,
|
||||
parameter COLOR_DEPTH = 8,
|
||||
|
@ -66,6 +66,8 @@ module isp #(
|
|||
);
|
||||
|
||||
crop #(
|
||||
.IN_WIDTH(IN_WIDTH),
|
||||
.IN_HEIGHT(IN_HEIGHT),
|
||||
.OUT_WIDTH(OUT_WIDTH),
|
||||
.OUT_HEIGHT(OUT_HEIGHT),
|
||||
.COLOR_DEPTH(COLOR_DEPTH)
|
||||
|
|
|
@ -44,6 +44,8 @@ VERILATOR_FLAGS += -Wall
|
|||
VERILATOR_FLAGS += --trace
|
||||
# Check SystemVerilog assertions
|
||||
VERILATOR_FLAGS += --assert
|
||||
# Enable multithreading
|
||||
# VERILATOR_FLAGS += --threads 4
|
||||
# Generate coverage analysis
|
||||
# VERILATOR_FLAGS += --coverage
|
||||
# Run Verilator in debug mode
|
||||
|
|
|
@ -17,9 +17,12 @@
|
|||
#include <fstream>
|
||||
#include <iostream>
|
||||
|
||||
#define IM_WIDTH 1936
|
||||
#define IM_HEIGHT 1088
|
||||
#define IM_SIZE (IM_WIDTH * IM_HEIGHT)
|
||||
#define IN_WIDTH 700
|
||||
#define IN_HEIGHT 500
|
||||
#define IN_SIZE (IN_WIDTH * IN_HEIGHT)
|
||||
#define OUT_WIDTH 640
|
||||
#define OUT_HEIGHT 480
|
||||
#define OUT_SIZE (OUT_WIDTH * OUT_HEIGHT)
|
||||
|
||||
using namespace std;
|
||||
using namespace sc_core;
|
||||
|
@ -37,11 +40,9 @@ SC_MODULE (TB_ISP) {
|
|||
sc_in<bool> im_en;
|
||||
sc_in<uint32_t> im_data;
|
||||
|
||||
// uint16_t image[IM_HEIGHT][IM_WIDTH];
|
||||
// uint32_t out[IM_HEIGHT][IM_WIDTH];
|
||||
// uint32_t out_head = 0;
|
||||
unique_ptr<uint16_t[]> image = make_unique<uint16_t[]>(IM_SIZE);
|
||||
unique_ptr<uint32_t[]> out = make_unique<uint32_t[]>(IM_SIZE);
|
||||
sc_out<bool> is_done;
|
||||
unique_ptr<uint16_t[]> image;
|
||||
unique_ptr<uint32_t[]> out = make_unique<uint32_t[]>(OUT_SIZE);
|
||||
|
||||
SC_CTOR (TB_ISP) {
|
||||
SC_CTHREAD(send_Data, clk.pos());
|
||||
|
@ -54,21 +55,21 @@ SC_MODULE (TB_ISP) {
|
|||
uint16_t pos_x = 0, pos_y = 0;
|
||||
while (true)
|
||||
{
|
||||
if (data_que.read() && pos_y < IM_HEIGHT - 2) {
|
||||
if (data_que.read() && pos_y < IN_HEIGHT - 2) {
|
||||
data_en.write(1);
|
||||
|
||||
printf("x=%3d, y=%3d, data=0x%04x\t", pos_x, pos_y, image[( pos_y + 0 ) * IM_WIDTH + pos_x]);
|
||||
printf("x=%3d, y=%3d, data=0x%04x\t", pos_x, pos_y, image[( pos_y + 1 ) * IM_WIDTH + pos_x]);
|
||||
printf("x=%3d, y=%3d, data=0x%04x\n", pos_x, pos_y, image[( pos_y + 2 ) * IM_WIDTH + pos_x]);
|
||||
printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y, image[( pos_y + 0 ) * IN_WIDTH + pos_x]);
|
||||
printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y, image[( pos_y + 1 ) * IN_WIDTH + pos_x]);
|
||||
printf("x=%4d, y=%4d, data=0x%04x\n", pos_x, pos_y, image[( pos_y + 2 ) * IN_WIDTH + pos_x]);
|
||||
|
||||
data_out[0].write(image[( pos_y + 0 ) * IM_WIDTH + pos_x]);
|
||||
data_out[1].write(image[( pos_y + 1 ) * IM_WIDTH + pos_x]);
|
||||
data_out[2].write(image[( pos_y + 2 ) * IM_WIDTH + pos_x]);
|
||||
data_out[0].write(image[( pos_y + 0 ) * IN_WIDTH + pos_x]);
|
||||
data_out[1].write(image[( pos_y + 1 ) * IN_WIDTH + pos_x]);
|
||||
data_out[2].write(image[( pos_y + 2 ) * IN_WIDTH + pos_x]);
|
||||
|
||||
wait(1);
|
||||
data_en.write(0);
|
||||
|
||||
if (pos_x++ >= IM_WIDTH) {
|
||||
if (pos_x++ >= IN_WIDTH) {
|
||||
pos_x = 0;
|
||||
pos_y++;
|
||||
}
|
||||
|
@ -82,18 +83,31 @@ SC_MODULE (TB_ISP) {
|
|||
}
|
||||
|
||||
void read_Data(void) {
|
||||
is_done.write(0);
|
||||
uint16_t pos_x = 0, pos_y = 0;
|
||||
uint32_t last_data = 0;
|
||||
uint16_t cnt = 0;
|
||||
while (true)
|
||||
{
|
||||
if (im_en.read()) {
|
||||
out[pos_y * IM_WIDTH + pos_x] = im_data.read();
|
||||
out[pos_y * OUT_WIDTH + pos_x] = im_data.read();
|
||||
|
||||
if (pos_x++ >= IM_WIDTH) {
|
||||
if (pos_x++ >= OUT_WIDTH) {
|
||||
pos_x = 0;
|
||||
pos_y++;
|
||||
}
|
||||
}
|
||||
|
||||
if (last_data == im_data.read()) {
|
||||
cnt++;
|
||||
if (cnt >= 100) {
|
||||
is_done.write(1);
|
||||
}
|
||||
} else {
|
||||
cnt = 0;
|
||||
}
|
||||
last_data = im_data.read();
|
||||
|
||||
wait();
|
||||
}
|
||||
}
|
||||
|
@ -104,7 +118,7 @@ int sc_main(int argc, char* argv[]) {
|
|||
// Open image
|
||||
ifstream in_image;
|
||||
ofstream out_image;
|
||||
in_image.open("../Demosaic/sim/transform/test.bin", ios::in | ios::binary);
|
||||
in_image.open("./transform/test.bin", ios::in | ios::binary);
|
||||
out_image.open("./out.bin", ios::out | ios::binary);
|
||||
if (!in_image.is_open()) {
|
||||
cout << "Open image fail" << endl;
|
||||
|
@ -114,18 +128,18 @@ int sc_main(int argc, char* argv[]) {
|
|||
}
|
||||
|
||||
// Read image
|
||||
// uint8_t buf[IM_SIZE * 2] = {0};
|
||||
auto buf = make_unique<uint8_t[]>(2 * IM_SIZE);
|
||||
// vector<vector<uint8_t>> buf(IM_HEIGHT, vector<uint8_t>(IM_WIDTH, 0));
|
||||
in_image.read((char*)buf.get(), IM_SIZE * 2);
|
||||
// uint8_t buf[IN_SIZE * 2] = {0};
|
||||
auto buf = make_unique<uint8_t[]>(2 * IN_SIZE);
|
||||
// vector<vector<uint8_t>> buf(IN_HEIGHT, vector<uint8_t>(IN_WIDTH, 0));
|
||||
in_image.read((char*)buf.get(), IN_SIZE * 2);
|
||||
in_image.close();
|
||||
// Reshape data
|
||||
// uint16_t image[IM_HEIGHT][IM_WIDTH] = {0};
|
||||
auto image = make_unique<uint16_t[]>(IM_SIZE);
|
||||
// uint16_t image[IN_HEIGHT][IN_WIDTH] = {0};
|
||||
auto image = make_unique<uint16_t[]>(IN_SIZE);
|
||||
uint32_t i = 0;
|
||||
for (int y = 0; y < IM_HEIGHT; y++) {
|
||||
for (int x = 0; x < IM_WIDTH; x++) {
|
||||
image[y * IM_WIDTH + x] = (uint16_t)buf[i] + ((uint16_t)buf[i + 1] << 8);
|
||||
for (int y = 0; y < IN_HEIGHT; y++) {
|
||||
for (int x = 0; x < IN_WIDTH; x++) {
|
||||
image[y * IN_WIDTH + x] = (uint16_t)buf[i] + ((uint16_t)buf[i + 1] << 8);
|
||||
i += 2;
|
||||
}
|
||||
}
|
||||
|
@ -167,6 +181,8 @@ int sc_main(int argc, char* argv[]) {
|
|||
sc_signal<bool> out_en;
|
||||
sc_signal<uint32_t> data_out;
|
||||
|
||||
sc_signal<bool> flag_done;
|
||||
|
||||
|
||||
// Construct the Verilated model, from inside Visp.h
|
||||
// Using unique_ptr is similar to "Visp* isp = new Visp" then deleting at end
|
||||
|
@ -195,6 +211,7 @@ int sc_main(int argc, char* argv[]) {
|
|||
tb_isp.im_clk(out_clk);
|
||||
tb_isp.im_en(out_en);
|
||||
tb_isp.im_data(data_out);
|
||||
tb_isp.is_done(flag_done);
|
||||
tb_isp.image = move(image);
|
||||
|
||||
// You must do one evaluation before enabling waves, in order to allow
|
||||
|
@ -226,6 +243,9 @@ int sc_main(int argc, char* argv[]) {
|
|||
reset.write(0); // Deassert reset
|
||||
}
|
||||
|
||||
if (flag_done.read())
|
||||
break;
|
||||
|
||||
// Simulate 1ns
|
||||
sc_start(1, SC_NS);
|
||||
}
|
||||
|
@ -240,9 +260,10 @@ int sc_main(int argc, char* argv[]) {
|
|||
}
|
||||
|
||||
// Save output image
|
||||
for (int y = 0; y < IM_HEIGHT; y++)
|
||||
for(int x = 0; x < IM_WIDTH; x++)
|
||||
out_image.write((const char *)&tb_isp.out[y * IM_WIDTH + x], sizeof(tb_isp.out[0]));
|
||||
cout << "Ready to save raw RGB image" << endl;
|
||||
for (int y = 0; y < OUT_HEIGHT; y++)
|
||||
for(int x = 0; x < OUT_WIDTH; x++)
|
||||
out_image.write((const char *)&tb_isp.out[y * OUT_WIDTH + x], sizeof(tb_isp.out[0]));
|
||||
out_image.close();
|
||||
|
||||
// Return good completion status
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
import imageio
|
||||
import numpy as np
|
||||
|
||||
cut_width = 1936
|
||||
cut_height = 1088
|
||||
cut_width = 700
|
||||
cut_height = 500
|
||||
|
||||
if __name__ == '__main__':
|
||||
# txt = open('./test.dat', 'w')
|
Loading…
Reference in New Issue