isp pipeline pass sim
This commit is contained in:
parent
35e6ab1e85
commit
c807c24456
|
@ -36,23 +36,23 @@ find_package(Threads REQUIRED)
|
|||
find_package(SystemCLanguage QUIET)
|
||||
|
||||
# Create software image process library
|
||||
file(GLOB_RECURSE IMG_SRC ${PROJECT_SOURCE_DIR}/src/img_process/*.cpp)
|
||||
add_library(img_process STATIC ${IMG_SRC})
|
||||
# file(GLOB_RECURSE IMG_SRC ${PROJECT_SOURCE_DIR}/src/img_process/*.cpp)
|
||||
# add_library(img_process STATIC ${IMG_SRC})
|
||||
|
||||
# Create a new executable target
|
||||
file(GLOB_RECURSE VISP_SRC ${PROJECT_SOURCE_DIR}/src/*.cpp)
|
||||
add_executable(Visp ${VISP_SRC})
|
||||
# ---------------------- EXE ---------------------------
|
||||
# VISP
|
||||
# ---------------------- EXE ---------------------------
|
||||
add_executable(Visp ${PROJECT_SOURCE_DIR}/src/sc_main.cpp)
|
||||
target_compile_definitions(Visp
|
||||
PRIVATE INPUT_IMG="${PROJECT_SOURCE_DIR}/src/transform/test.bin"
|
||||
PRIVATE OUTPUT_DIR="${PROJECT_SOURCE_DIR}/logs/"
|
||||
)
|
||||
target_include_directories(Visp PRIVATE ${PROJECT_SOURCE_DIR}/src/img_process)
|
||||
target_link_libraries(Visp PRIVATE img_process)
|
||||
# target_compile_features(Visp PUBLIC cxx_std_17)
|
||||
# set_property(TARGET Visp PROPERTY CXX_STANDARD ${SystemC_CXX_STANDARD})
|
||||
# target_link_libraries(Visp PRIVATE img_process)
|
||||
|
||||
# Add the Verilated circuit to the target
|
||||
# Get RTL source code dir
|
||||
SUBDIRLIST(RTL_SUBDIR ${PROJECT_SOURCE_DIR}/rtl)
|
||||
# Add the Verilated circuit to the target
|
||||
verilate(Visp SYSTEMC COVERAGE TRACE
|
||||
INCLUDE_DIRS ${RTL_SUBDIR}
|
||||
VERILATOR_ARGS +librescan +libext+.v+.sv+.vh+.svh -y . -x-assign fast
|
||||
|
@ -62,3 +62,27 @@ verilate(Visp SYSTEMC COVERAGE TRACE
|
|||
|
||||
# SystemC Link
|
||||
verilator_link_systemc(Visp)
|
||||
|
||||
# ---------------------- EXE ---------------------------
|
||||
# VISP_Pipeline
|
||||
# ---------------------- EXE ---------------------------
|
||||
add_executable(Visp_Pipeline ${PROJECT_SOURCE_DIR}/src/sc_main_pipeline.cpp)
|
||||
target_compile_definitions(Visp_Pipeline
|
||||
PRIVATE INPUT_IMG="${PROJECT_SOURCE_DIR}/src/transform/test.bin"
|
||||
PRIVATE OUTPUT_DIR="${PROJECT_SOURCE_DIR}/logs/"
|
||||
)
|
||||
target_include_directories(Visp_Pipeline PRIVATE ${PROJECT_SOURCE_DIR}/src/img_process)
|
||||
# target_link_libraries(Visp_Pipeline PRIVATE img_process)
|
||||
|
||||
# Get RTL source code dir
|
||||
SUBDIRLIST(RTL_SUBDIR ${PROJECT_SOURCE_DIR}/rtl)
|
||||
# Add the Verilated circuit to the target
|
||||
verilate(Visp_Pipeline SYSTEMC COVERAGE TRACE
|
||||
INCLUDE_DIRS ${RTL_SUBDIR}
|
||||
VERILATOR_ARGS +librescan +libext+.v+.sv+.vh+.svh -y . -x-assign fast -Wno-WIDTHEXPAND
|
||||
SOURCES ${PROJECT_SOURCE_DIR}/rtl/isp_Pipeline.sv
|
||||
TOP_MODULE isp_Pipeline
|
||||
)
|
||||
|
||||
# SystemC Link
|
||||
verilator_link_systemc(Visp_Pipeline)
|
|
@ -1,7 +1,7 @@
|
|||
`timescale 1ns / 1ps
|
||||
|
||||
// 三通道图像合成一个RGB图像
|
||||
module ColorBlender #(
|
||||
module ColorBlender_Pipeline #(
|
||||
parameter reg [4:0] IN_DEPTH = 12, // 输入图像的色深
|
||||
parameter reg [4:0] OUT_DEPTH = 8 // 输出图像的色深
|
||||
) (
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
`timescale 1ns / 1ps
|
||||
module Crop #(
|
||||
module Crop_Pipeline #(
|
||||
parameter IN_WIDTH = 512,
|
||||
parameter IN_HEIGHT = 512,
|
||||
parameter OFFSET_X = 120,
|
||||
|
|
|
@ -42,20 +42,29 @@ module Demosaic2 #(
|
|||
|
||||
// 三段状态机实现,窗口滑动,颜色计算
|
||||
// 状态切换
|
||||
always @(posedge clk) begin
|
||||
if (reset) state <= READ_DATA;
|
||||
else state <= nextState;
|
||||
always @(posedge clk)
|
||||
begin
|
||||
if (reset)
|
||||
state <= READ_DATA;
|
||||
else
|
||||
state <= nextState;
|
||||
end
|
||||
|
||||
// 下一状态更新
|
||||
always @(*) begin
|
||||
always @(*)
|
||||
begin
|
||||
case (state)
|
||||
// 记录够3x3个数据后,进行rgb转换
|
||||
READ_DATA: nextState = (cnt_data >= 3) ? COLOR_GEN : READ_DATA;
|
||||
COLOR_GEN: nextState = SEND_DATA;
|
||||
SEND_DATA: nextState = (in_receive) ? SLIDE_WINDOW : SEND_DATA;
|
||||
SLIDE_WINDOW: nextState = READ_DATA;
|
||||
default: nextState = READ_DATA;
|
||||
READ_DATA:
|
||||
nextState = (cnt_data >= 3) ? COLOR_GEN : READ_DATA;
|
||||
COLOR_GEN:
|
||||
nextState = SEND_DATA;
|
||||
SEND_DATA:
|
||||
nextState = (in_receive) ? SLIDE_WINDOW : SEND_DATA;
|
||||
SLIDE_WINDOW:
|
||||
nextState = READ_DATA;
|
||||
default:
|
||||
nextState = READ_DATA;
|
||||
endcase
|
||||
end
|
||||
|
||||
|
@ -65,8 +74,10 @@ module Demosaic2 #(
|
|||
assign out_receive = (in_en && state == READ_DATA && !reset) ? 1 : 0;
|
||||
|
||||
// 各状态执行的操作
|
||||
always @(posedge clk) begin
|
||||
if (reset) begin
|
||||
always @(posedge clk)
|
||||
begin
|
||||
if (reset)
|
||||
begin
|
||||
// 外部输出初始化
|
||||
out_en <= 0;
|
||||
out_r <= 0;
|
||||
|
@ -78,12 +89,16 @@ module Demosaic2 #(
|
|||
pos_y <= 0;
|
||||
cnt_data <= 0;
|
||||
raw_type <= RAW_TYPE;
|
||||
end else begin
|
||||
end
|
||||
else
|
||||
begin
|
||||
// 状态机执行
|
||||
case (state)
|
||||
// 读取数据
|
||||
READ_DATA: begin
|
||||
if (in_en) begin
|
||||
READ_DATA:
|
||||
begin
|
||||
if (in_en)
|
||||
begin
|
||||
data_cache[0 + cnt_data * 3] <= in_data[0];
|
||||
data_cache[1 + cnt_data * 3] <= in_data[1];
|
||||
data_cache[2 + cnt_data * 3] <= in_data[2];
|
||||
|
@ -92,80 +107,107 @@ module Demosaic2 #(
|
|||
end
|
||||
end
|
||||
|
||||
COLOR_GEN: begin
|
||||
COLOR_GEN:
|
||||
begin
|
||||
// 生成rgb图像
|
||||
// data case 0 case 1 case 2 case 3
|
||||
// 0 3 6 G R G R G R B G B G B G
|
||||
// 1 4 7 B G B G B G G R G R G R
|
||||
// 2 5 8 G R G R G R B G B G B G
|
||||
case (raw_type)
|
||||
0: begin // Missing B, R on G
|
||||
0:
|
||||
begin // Missing B, R on G
|
||||
blue <= (data_cache[1] + data_cache[7]) >> 1;
|
||||
red <= (data_cache[3] + data_cache[5]) >> 1;
|
||||
green <= data_cache[4];
|
||||
end
|
||||
|
||||
1: begin // Missing G, R on B
|
||||
1:
|
||||
begin // Missing G, R on B
|
||||
green <= (data_cache[1] + data_cache[3] + data_cache[5] + data_cache[7]) >> 2;
|
||||
red <= (data_cache[0] + data_cache[2] + data_cache[6] + data_cache[8]) >> 2;
|
||||
blue <= data_cache[4];
|
||||
end
|
||||
|
||||
2: begin // Missing G, B on R
|
||||
2:
|
||||
begin // Missing G, B on R
|
||||
green <= (data_cache[1] + data_cache[3] + data_cache[5] + data_cache[7]) >> 2;
|
||||
blue <= (data_cache[0] + data_cache[2] + data_cache[6] + data_cache[8]) >> 2;
|
||||
red <= data_cache[4];
|
||||
end
|
||||
|
||||
|
||||
3: begin // Missing B, R on G
|
||||
3:
|
||||
begin // Missing B, R on G
|
||||
red <= (data_cache[1] + data_cache[7]) >> 1;
|
||||
blue <= (data_cache[3] + data_cache[5]) >> 1;
|
||||
green <= data_cache[4];
|
||||
end
|
||||
default: ;
|
||||
default:
|
||||
;
|
||||
endcase
|
||||
|
||||
case (raw_type)
|
||||
0: raw_type <= 1;
|
||||
1: raw_type <= 0;
|
||||
2: raw_type <= 3;
|
||||
3: raw_type <= 2;
|
||||
0:
|
||||
raw_type <= 1;
|
||||
1:
|
||||
raw_type <= 0;
|
||||
2:
|
||||
raw_type <= 3;
|
||||
3:
|
||||
raw_type <= 2;
|
||||
endcase
|
||||
end
|
||||
|
||||
SEND_DATA: begin
|
||||
if (in_ready && !in_receive) begin
|
||||
SEND_DATA:
|
||||
begin
|
||||
if (in_ready && !in_receive)
|
||||
begin
|
||||
out_en <= 1;
|
||||
out_r <= red;
|
||||
out_b <= blue;
|
||||
out_g <= green;
|
||||
end else out_en <= 0;
|
||||
pos_x <= pos_x + 1;
|
||||
end
|
||||
else
|
||||
out_en <= 0;
|
||||
end
|
||||
|
||||
SLIDE_WINDOW: begin
|
||||
SLIDE_WINDOW:
|
||||
begin
|
||||
// 记录位置寄存器自增,并处理缓存数据
|
||||
pos_x <= pos_x + 1;
|
||||
if (pos_x >= IM_WIDTH - 2 - 1) begin
|
||||
if (pos_x >= IM_WIDTH - 2)
|
||||
begin
|
||||
cnt_data <= 0;
|
||||
pos_x <= 0;
|
||||
pos_y <= pos_y + 1;
|
||||
if (pos_y >= IM_HEIGHT - 2 - 1) begin
|
||||
if (pos_y >= IM_HEIGHT - 2)
|
||||
begin
|
||||
pos_y <= 0;
|
||||
end
|
||||
// 换行后切换Bayer格式
|
||||
if (pos_y % 2 == 1) begin
|
||||
if (pos_y % 2 == 1)
|
||||
begin
|
||||
raw_type <= RAW_TYPE;
|
||||
end else begin
|
||||
end
|
||||
else
|
||||
begin
|
||||
case (RAW_TYPE)
|
||||
0: raw_type <= 2;
|
||||
1: raw_type <= 3;
|
||||
2: raw_type <= 0;
|
||||
3: raw_type <= 1;
|
||||
default: ;
|
||||
0:
|
||||
raw_type <= 2;
|
||||
1:
|
||||
raw_type <= 3;
|
||||
2:
|
||||
raw_type <= 0;
|
||||
3:
|
||||
raw_type <= 1;
|
||||
default:
|
||||
;
|
||||
endcase
|
||||
end
|
||||
end else begin
|
||||
end
|
||||
else
|
||||
begin
|
||||
cnt_data <= 2;
|
||||
|
||||
// 窗口右移
|
||||
|
@ -178,7 +220,8 @@ module Demosaic2 #(
|
|||
end
|
||||
end
|
||||
|
||||
default: ;
|
||||
default:
|
||||
;
|
||||
endcase
|
||||
end
|
||||
end
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
`timescale 1ns / 1ps
|
||||
module Demosaic #(
|
||||
module Demosaic_Pipeline #(
|
||||
parameter WINDOW_LENGTH = 3,
|
||||
parameter reg [15:0] TOTAL_WIDTH = 512+3, // 总图像宽度
|
||||
parameter reg [15:0] TOTAL_HEIGHT = 256+3, // 总图像高度
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
`timescale 1ns / 1ps
|
||||
|
||||
module isp #(
|
||||
module isp_Pipeline #(
|
||||
parameter reg [15:0] IN_WIDTH = 1936,
|
||||
parameter reg [15:0] IN_HEIGHT = 1088,
|
||||
parameter OFFSET_X = 7,
|
||||
|
@ -59,7 +59,7 @@ module isp #(
|
|||
);
|
||||
|
||||
|
||||
Demosaic #(
|
||||
Demosaic_Pipeline #(
|
||||
.WINDOW_LENGTH(3),
|
||||
.TOTAL_WIDTH (IN_WIDTH),
|
||||
.TOTAL_HEIGHT (IN_HEIGHT),
|
||||
|
@ -78,7 +78,7 @@ module isp #(
|
|||
.out_fsync(Demosaic2_fsync)
|
||||
);
|
||||
|
||||
ColorBlender #(
|
||||
ColorBlender_Pipeline #(
|
||||
.IN_DEPTH(12), // 输入图像的色深
|
||||
.OUT_DEPTH(COLOR_DEPTH) // 输出图像的色深
|
||||
) ColorBlender_inst (
|
||||
|
@ -101,7 +101,7 @@ module isp #(
|
|||
.enable (blender_enable)
|
||||
);
|
||||
|
||||
Crop #(
|
||||
Crop_Pipeline #(
|
||||
.IN_WIDTH (IN_WIDTH),
|
||||
.IN_HEIGHT (IN_HEIGHT),
|
||||
.OFFSET_X (OFFSET_X),
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -1,87 +0,0 @@
|
|||
#include "bmp.hpp"
|
||||
|
||||
#include <iostream>
|
||||
|
||||
// 将RGB24格式像素数据封装为BMP图像
|
||||
bool write_bmp(const char *filename, uint8_t *data, int32_t width,
|
||||
int32_t height) {
|
||||
BMPFileHeader file_header = {0};
|
||||
BMPInfoHeader info_header = {0};
|
||||
std::ofstream ofs(filename, std::ios::binary);
|
||||
if (!ofs) {
|
||||
std::cerr << "Failed to create file: " << filename << std::endl;
|
||||
return false;
|
||||
}
|
||||
// BMP文件头
|
||||
file_header.type = 0x4D42; // BM
|
||||
file_header.size =
|
||||
sizeof(BMPFileHeader) + sizeof(BMPInfoHeader) + width * height * 3;
|
||||
file_header.offset = sizeof(BMPFileHeader) + sizeof(BMPInfoHeader);
|
||||
ofs.write(reinterpret_cast<char *>(&file_header), sizeof(file_header));
|
||||
|
||||
// BMP位图信息头
|
||||
info_header.size = sizeof(BMPInfoHeader);
|
||||
info_header.width = width;
|
||||
info_header.height = height;
|
||||
info_header.planes = 1;
|
||||
info_header.bit_count = 24;
|
||||
info_header.size_image = width * height * 3;
|
||||
ofs.write(reinterpret_cast<char *>(&info_header), sizeof(info_header));
|
||||
|
||||
// 像素数据
|
||||
int32_t row_size = (((width + 1) * 3) / 4) * 4; // 行字节数,必须为4的倍数
|
||||
uint8_t *row_data = new uint8_t[row_size];
|
||||
for (int32_t y = height - 1; y >= 0; --y) { // BMP图像的行是从下往上存储的
|
||||
for (int32_t x = 0; x < width; ++x) {
|
||||
row_data[x * 3 + 2] = data[(y * width + x) * 3 + 0]; // B
|
||||
row_data[x * 3 + 1] = data[(y * width + x) * 3 + 1]; // G
|
||||
row_data[x * 3 + 0] = data[(y * width + x) * 3 + 2]; // R
|
||||
}
|
||||
ofs.write(reinterpret_cast<char *>(row_data), row_size);
|
||||
}
|
||||
delete[] row_data;
|
||||
ofs.close();
|
||||
return true;
|
||||
}
|
||||
|
||||
bool writeBMP(std::ofstream &pic_file, std::vector<uint8_t> &pic_data,
|
||||
const int32_t pic_width, const int32_t pic_height) {
|
||||
BMPFileHeader file_header = {0};
|
||||
BMPInfoHeader info_header = {0};
|
||||
|
||||
// Check file
|
||||
if (!pic_file || !pic_file.is_open()) {
|
||||
std::printf("Failed to open file!\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
// Write file header
|
||||
file_header.type = 0x4D42; // BM
|
||||
file_header.size =
|
||||
sizeof(BMPFileHeader) + sizeof(BMPInfoHeader) + pic_width * pic_height * 3;
|
||||
file_header.offset = sizeof(BMPFileHeader) + sizeof(BMPInfoHeader);
|
||||
pic_file.write(reinterpret_cast<char *>(&file_header), sizeof(file_header));
|
||||
|
||||
// Write info header
|
||||
info_header.size = sizeof(BMPInfoHeader);
|
||||
info_header.width = pic_width;
|
||||
info_header.height = pic_height;
|
||||
info_header.planes = 1;
|
||||
info_header.bit_count = 24;
|
||||
info_header.size_image = pic_width * pic_height * 3;
|
||||
pic_file.write(reinterpret_cast<char *>(&info_header), sizeof(info_header));
|
||||
|
||||
// Write BMP
|
||||
int32_t row_size = (((pic_width + 1) * 3) / 4) * 4; // 行字节数,必须为4的倍数
|
||||
uint8_t *row_data = new uint8_t[row_size];
|
||||
for (int32_t y = pic_height - 1; y >= 0; --y) { // BMP图像的行是从下往上存储的
|
||||
for (int32_t x = 0; x < pic_width; ++x) {
|
||||
row_data[x * 3 + 2] = pic_data[(y * pic_width + x) * 3 + 0]; // B
|
||||
row_data[x * 3 + 1] = pic_data[(y * pic_width + x) * 3 + 1]; // G
|
||||
row_data[x * 3 + 0] = pic_data[(y * pic_width + x) * 3 + 2]; // R
|
||||
}
|
||||
pic_file.write(reinterpret_cast<char *>(row_data), row_size);
|
||||
}
|
||||
delete[] row_data;
|
||||
return true;
|
||||
}
|
|
@ -1,43 +0,0 @@
|
|||
#ifndef __BMP_H__
|
||||
#define __BMP_H__
|
||||
|
||||
#include <stdint.h>
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <vector>
|
||||
|
||||
#pragma pack(push, 1) // 1字节对齐
|
||||
|
||||
// BMP文件头结构体
|
||||
struct BMPFileHeader {
|
||||
uint16_t type; // 文件类型,必须为"BM"
|
||||
uint32_t size; // 文件大小,单位为字节
|
||||
uint16_t reserved1; // 保留字段,必须为0
|
||||
uint16_t reserved2; // 保留字段,必须为0
|
||||
uint32_t offset; // 像素数据起始位置,单位为字节
|
||||
};
|
||||
|
||||
// BMP位图信息头结构体
|
||||
struct BMPInfoHeader {
|
||||
uint32_t size; // 信息头大小,必须为40
|
||||
int32_t width; // 图像宽度,单位为像素
|
||||
int32_t height; // 图像高度,单位为像素
|
||||
uint16_t planes; // 颜色平面数,必须为1
|
||||
uint16_t bit_count; // 每个像素的位数,必须为24
|
||||
uint32_t compression; // 压缩方式,必须为0
|
||||
uint32_t size_image; // 像素数据大小,单位为字节
|
||||
int32_t x_pels_per_meter; // X方向像素数/米
|
||||
int32_t y_pels_per_meter; // Y方向像素数/米
|
||||
uint32_t clr_used; // 使用的颜色数,必须为0
|
||||
uint32_t clr_important; // 重要的颜色数,必须为0
|
||||
};
|
||||
|
||||
#pragma pack(pop)
|
||||
|
||||
bool write_bmp(const char *filename, uint8_t *data, int32_t width,
|
||||
int32_t height);
|
||||
bool writeBMP(std::ofstream &pic_file, std::vector<uint8_t> &pic_data,
|
||||
const int32_t pic_width, const int32_t pic_height);
|
||||
|
||||
#endif
|
|
@ -1,26 +1,31 @@
|
|||
// For std::unique_ptr
|
||||
#include <memory>
|
||||
// For read and write
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <fstream>
|
||||
#include <ios>
|
||||
#include <iostream>
|
||||
|
||||
// SystemC global header
|
||||
#include "sysc/communication/sc_signal.h"
|
||||
#include "sysc/kernel/sc_module.h"
|
||||
#include <systemc>
|
||||
|
||||
// Include common routines
|
||||
#include <string>
|
||||
#include <sys/stat.h> // mkdir
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include <verilated.h>
|
||||
#include <verilated_vcd_sc.h>
|
||||
|
||||
// Include model header, generated from Verilating "isp.v"
|
||||
#include "Visp.h"
|
||||
|
||||
// Handle file
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
|
||||
// math
|
||||
#include <cmath>
|
||||
|
||||
#include "bmp.hpp"
|
||||
// Write Pictures
|
||||
#include "bitmap_image.hpp"
|
||||
|
||||
// Image Parameters
|
||||
static const uint16_t IN_WIDTH = 1936;
|
||||
static const uint16_t IN_HEIGHT = 1088;
|
||||
static const uint32_t IN_SIZE = (IN_WIDTH * IN_HEIGHT);
|
||||
|
@ -45,65 +50,69 @@ struct color_gain {
|
|||
} color_gain{1.1, 0.7, 1.3}, white_gain;
|
||||
|
||||
static const double gamma_value = 2.2;
|
||||
static const double saturation_inc = 0.5;
|
||||
static const double sat_inc = 0.5;
|
||||
static const double contrast = 1.2;
|
||||
// static const double white_radio = 0.1;
|
||||
|
||||
using namespace sc_core;
|
||||
using namespace sc_dt;
|
||||
|
||||
bool picProcess(uint32_t *image, uint16_t number);
|
||||
|
||||
SC_MODULE(TB_ISP) {
|
||||
sc_in_clk clk;
|
||||
sc_in<bool> reset;
|
||||
sc_in<bool> rst;
|
||||
|
||||
sc_in<bool> in_ready;
|
||||
sc_in<bool> in_receive;
|
||||
sc_out<bool> out_en;
|
||||
sc_out<uint32_t> out_data[3];
|
||||
sc_in<bool> in_ready; // next module ready to receive data
|
||||
sc_out<bool> out_valid; // next module data valid signal
|
||||
sc_out<uint32_t> out_data[3]; // next module receive data
|
||||
|
||||
sc_in<bool> im_en;
|
||||
sc_out<bool> out_ready;
|
||||
// sc_out<bool> out_receceive;
|
||||
sc_in<uint32_t> im_data;
|
||||
sc_in<bool> in_valid; // this module receive data valid signal
|
||||
sc_out<bool> out_ready; // this module ready to receive data
|
||||
sc_in<uint32_t> in_data; // this module receive data
|
||||
|
||||
sc_out<bool> is_done;
|
||||
std::unique_ptr<uint16_t[]> image = std::make_unique<uint16_t[]>(IN_SIZE);
|
||||
bool is_done; // when receive all data
|
||||
std::vector<uint16_t> image; // the data of image
|
||||
std::vector<uint32_t> process_image = std::vector<uint32_t>(
|
||||
OUT_SIZE, 0); // after isp process, the data of image
|
||||
|
||||
SC_CTOR(TB_ISP) {
|
||||
SC_CTHREAD(send_Data, clk.pos());
|
||||
reset_signal_is(reset, true);
|
||||
SC_CTHREAD(sendData, clk.pos()); // when clk posedge, exec sendData
|
||||
reset_signal_is(rst, true); // set rst signal
|
||||
|
||||
SC_CTHREAD(read_Data, clk.pos());
|
||||
SC_CTHREAD(readData, clk.pos());
|
||||
reset_signal_is(rst, true); // set rst signal
|
||||
}
|
||||
|
||||
void send_Data(void) {
|
||||
void sendData(void) {
|
||||
// init var
|
||||
uint16_t pos_x = 0, pos_y = 0, cnt_flame = 0;
|
||||
bool is_finish = false;
|
||||
bool is_finish = false; // when send all data
|
||||
// reset
|
||||
out_valid = false;
|
||||
for (auto &data : out_data)
|
||||
data = 0;
|
||||
|
||||
while (true) {
|
||||
if (in_ready.read() && !is_finish) {
|
||||
out_en.write(1);
|
||||
if (in_ready && !is_finish) {
|
||||
// valid and send data
|
||||
out_valid = true;
|
||||
out_data[0] = image[(pos_y + 0) * IN_WIDTH + pos_x];
|
||||
out_data[1] = image[(pos_y + 1) * IN_WIDTH + pos_x];
|
||||
out_data[2] = image[(pos_y + 2) * IN_WIDTH + pos_x];
|
||||
|
||||
printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y,
|
||||
// print data
|
||||
std::printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y,
|
||||
image[(pos_y + 0) * IN_WIDTH + pos_x]);
|
||||
printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y,
|
||||
std::printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y,
|
||||
image[(pos_y + 1) * IN_WIDTH + pos_x]);
|
||||
printf("x=%4d, y=%4d, data=0x%04x\n", pos_x, pos_y,
|
||||
std::printf("x=%4d, y=%4d, data=0x%04x\n", pos_x, pos_y,
|
||||
image[(pos_y + 2) * IN_WIDTH + pos_x]);
|
||||
|
||||
out_data[0].write(image[(pos_y + 0) * IN_WIDTH + pos_x]);
|
||||
out_data[1].write(image[(pos_y + 1) * IN_WIDTH + pos_x]);
|
||||
out_data[2].write(image[(pos_y + 2) * IN_WIDTH + pos_x]);
|
||||
|
||||
pos_x++;
|
||||
|
||||
// calculate position and recognize when to finish
|
||||
if (pos_x >= IN_WIDTH) {
|
||||
pos_x = 0;
|
||||
pos_y++;
|
||||
}
|
||||
if (pos_y >= IN_HEIGHT - 2) {
|
||||
if (pos_y >= IN_HEIGHT - 1) {
|
||||
pos_y = 0;
|
||||
cnt_flame++;
|
||||
}
|
||||
|
@ -111,23 +120,32 @@ SC_MODULE(TB_ISP) {
|
|||
is_finish = true;
|
||||
}
|
||||
} else {
|
||||
out_en.write(0);
|
||||
out_valid = false;
|
||||
}
|
||||
|
||||
// wait for next clk
|
||||
wait();
|
||||
}
|
||||
}
|
||||
|
||||
void read_Data(void) {
|
||||
is_done.write(0);
|
||||
uint32_t pos_x = 0, pos_y = 0, cnt_flame = 0;
|
||||
void readData(void) {
|
||||
// init local var
|
||||
uint16_t pos_x = 0, pos_y = 0, cnt_flame = 0;
|
||||
uint32_t last_data = 0, cnt = 0;
|
||||
bool is_finish = false;
|
||||
while (true) {
|
||||
if (im_en.read() && !is_finish) {
|
||||
out_ready.write(false);
|
||||
// reset
|
||||
out_ready = false;
|
||||
is_done = false;
|
||||
|
||||
process_image[pos_y * OUT_WIDTH + pos_x] = im_data.read();
|
||||
while (true) {
|
||||
if (!is_finish) {
|
||||
out_ready = true;
|
||||
|
||||
// when data valid, write it down
|
||||
if (in_valid) {
|
||||
process_image[pos_y * OUT_WIDTH + pos_x] = in_data;
|
||||
|
||||
// calculate position
|
||||
pos_x++;
|
||||
|
||||
if (pos_x >= OUT_WIDTH) {
|
||||
|
@ -143,23 +161,25 @@ SC_MODULE(TB_ISP) {
|
|||
if (cnt_flame >= FLAMES) {
|
||||
is_finish = true;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
out_ready.write(true);
|
||||
// out_receceive.write(false);
|
||||
out_ready = false;
|
||||
}
|
||||
|
||||
// when data didn't change some time, it end
|
||||
if (last_data == im_data.read() && is_finish) {
|
||||
// when no data send, give finish signal
|
||||
if (is_finish && (last_data == in_data)) {
|
||||
cnt++;
|
||||
if (cnt >= 100000L) {
|
||||
is_done.write(1);
|
||||
printf("x=%d, y=%d\n", pos_x, pos_y);
|
||||
if (cnt >= 100000L) { // when receive many times the same data
|
||||
is_done = true;
|
||||
std::printf("Finish Reading data; pos_x = %d, pos_y = %d\n", pos_x,
|
||||
pos_y);
|
||||
}
|
||||
} else {
|
||||
cnt = 0;
|
||||
}
|
||||
last_data = im_data.read();
|
||||
last_data = in_data;
|
||||
|
||||
// wait for next clk
|
||||
wait();
|
||||
}
|
||||
}
|
||||
|
@ -174,157 +194,53 @@ SC_MODULE(TB_ISP) {
|
|||
return false;
|
||||
}
|
||||
|
||||
// Transform isp image
|
||||
std::vector<uint8_t> bmp_image(3 * OUT_SIZE);
|
||||
for (int i = 0; i < OUT_SIZE; i++) {
|
||||
bmp_image[3 * i + 0] = (process_image[i] & 0x00ff0000) >> 16;
|
||||
bmp_image[3 * i + 1] = (process_image[i] & 0x0000ff00) >> 8;
|
||||
bmp_image[3 * i + 2] = (process_image[i] & 0x000000ff) >> 0;
|
||||
}
|
||||
|
||||
// Write BMP image
|
||||
std::ofstream bmp;
|
||||
bmp.open(std::string(OUTPUT_DIR) + name);
|
||||
if (!bmp.is_open()) {
|
||||
std::cout << "Output File Open Failed!!!\n";
|
||||
bitmap_image bmp(OUT_WIDTH, OUT_HEIGHT);
|
||||
if (!bmp) {
|
||||
std::cout << "Output Image Open Failed!!!\n";
|
||||
return false;
|
||||
}
|
||||
ret = writeBMP(bmp, bmp_image, OUT_WIDTH, OUT_HEIGHT);
|
||||
bmp.close();
|
||||
for (int y = 0; y < OUT_HEIGHT; y++)
|
||||
for (int x = 0; x < OUT_WIDTH; x++)
|
||||
bmp.set_pixel(x, y,
|
||||
(process_image[y * OUT_WIDTH + x] & 0x00ff0000) >> 16,
|
||||
(process_image[y * OUT_WIDTH + x] & 0x0000ff00) >> 8,
|
||||
(process_image[y * OUT_WIDTH + x] & 0x000000ff) >> 0);
|
||||
bmp.save_image(std::string(OUTPUT_DIR) + name);
|
||||
return ret;
|
||||
}
|
||||
};
|
||||
|
||||
bool picProcess(uint32_t *image, uint16_t number) {
|
||||
uint8_t *data = new uint8_t[OUT_WIDTH * OUT_HEIGHT * 3]; // RGB24格式像素数据
|
||||
|
||||
// software algorthms analyze
|
||||
uint32_t red_total = 0, green_total = 0, blue_total = 0;
|
||||
uint8_t red_max = 0, green_max = 0, blue_max = 0;
|
||||
for (int32_t y = 0; y < OUT_HEIGHT; ++y) {
|
||||
for (int32_t x = 0; x < OUT_WIDTH; ++x) {
|
||||
int32_t index = (y * OUT_WIDTH + x) * 3;
|
||||
|
||||
uint8_t red = (image[y * OUT_WIDTH + x] & 0x00ff0000) >> 16;
|
||||
uint8_t green = (image[y * OUT_WIDTH + x] & 0x0000ff00) >> 8;
|
||||
uint8_t blue = (image[y * OUT_WIDTH + x] & 0x000000ff);
|
||||
|
||||
// Adjust gamma line
|
||||
// red = 255 * std::pow(red / 255.0, 1 / gamma_value);
|
||||
// green = 255 * std::pow(green / 255.0, 1 / gamma_value);
|
||||
// blue = 255 * std::pow(blue / 255.0, 1 / gamma_value);
|
||||
|
||||
// Calculate white balance data
|
||||
// red_max = std::max(red_max, red);
|
||||
// green_max = std::max(green_max, green);
|
||||
// blue_max = std::max(blue_max, blue);
|
||||
// red_total += red;
|
||||
// green_total += green;
|
||||
// blue_total += blue;
|
||||
|
||||
// Adjust vibrance
|
||||
// uint8_t max = std::max({red, green, blue});
|
||||
// uint8_t min = std::min({red, green, blue});
|
||||
// double delta = (max - min) / 255.0;
|
||||
// double value = (max + min) / 255.0;
|
||||
// if (delta != 0) {
|
||||
// double L = value / 2.0;
|
||||
// // double S = (L <= 0.5) ? delta / value : delta / (2 -
|
||||
// value); double S = delta / max; double alpha = 0.0; if
|
||||
// (saturation_inc >= 0) {
|
||||
// if ((saturation_inc + S) >= 1)
|
||||
// alpha = S;
|
||||
// else
|
||||
// alpha = 1 - saturation_inc;
|
||||
// alpha = 1 / alpha - 1;
|
||||
// red = static_cast<uchar>(red + (red - L * 255) * alpha);
|
||||
// green =
|
||||
// static_cast<uchar>(green + (green - L * 255) *
|
||||
// alpha);
|
||||
// blue = static_cast<uchar>(blue + (blue - L * 255) *
|
||||
// alpha);
|
||||
// } else {
|
||||
// alpha = saturation_inc;
|
||||
// red = static_cast<uchar>(L * 255 +
|
||||
// (red - L * 255) * (1 + alpha));
|
||||
// green = static_cast<uchar>(L * 255 +
|
||||
// (green - L * 255) * (1 +
|
||||
// alpha));
|
||||
// blue = static_cast<uchar>(L * 255 +
|
||||
// (blue - L * 255) * (1 +
|
||||
// alpha));
|
||||
// }
|
||||
// }
|
||||
|
||||
// Contrast enhancement
|
||||
// red = static_cast<uchar>(contrast * (red - 128) + 128);
|
||||
// green = static_cast<uchar>(contrast * (green - 128) + 128);
|
||||
// blue = static_cast<uchar>(contrast * (blue - 128) + 128);
|
||||
|
||||
// save data
|
||||
data[index + 0] = red; // R
|
||||
data[index + 1] = green; // G
|
||||
data[index + 2] = blue; // B
|
||||
}
|
||||
}
|
||||
|
||||
// Adjust White Balance : Grey World Color Correction
|
||||
// double K = static_cast<double>(red_total + green_total + blue_total) /
|
||||
// (3 * OUT_SIZE);
|
||||
// white_gain.red = static_cast<double>(K * OUT_SIZE) / red_total;
|
||||
// white_gain.green = static_cast<double>(K * OUT_SIZE) / green_total;
|
||||
// white_gain.blue = static_cast<double>(K * OUT_SIZE) / blue_total;
|
||||
// printf("Gain: red = %f, green = %f, blue = %f", white_gain.red,
|
||||
// white_gain.green, white_gain.blue);
|
||||
// for (int32_t y = 0; y < OUT_HEIGHT; ++y) {
|
||||
// for (int32_t x = 0; x < OUT_WIDTH; ++x) {
|
||||
// int32_t index = (y * OUT_WIDTH + x) * 3;
|
||||
|
||||
// data[index + 0] =
|
||||
// static_cast<uint8_t>(white_gain.red * data[index + 0]);
|
||||
// data[index + 1] =
|
||||
// static_cast<uint8_t>(white_gain.green * data[index + 1]);
|
||||
// data[index + 2] =
|
||||
// static_cast<uint8_t>(white_gain.blue * data[index + 2]);
|
||||
// }
|
||||
// }
|
||||
|
||||
// save to bmp
|
||||
std::cout << "Ready to save raw RGB image" << std::endl;
|
||||
char file_name[64] = {0};
|
||||
snprintf(file_name, sizeof(file_name), "pic_%d.bmp", number);
|
||||
write_bmp(file_name, data, OUT_WIDTH, OUT_HEIGHT);
|
||||
delete[] data;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int sc_main(int argc, char *argv[]) {
|
||||
std::cout << "Get into sc_main" << std::endl;
|
||||
// Open image
|
||||
std::ifstream in_image;
|
||||
in_image.open(INPUT_IMG, std::ios::in | std::ios::binary);
|
||||
if (!in_image.is_open()) {
|
||||
std::cout << "Open image fail" << std::endl;
|
||||
std::printf("Enter into sc_main\n");
|
||||
|
||||
// Open Image
|
||||
std::ifstream image;
|
||||
image.open(INPUT_IMG, std::ios::in | std::ios::binary);
|
||||
// Check image whether is open
|
||||
if (!image.is_open()) {
|
||||
std::printf("Open Image Failed!!!\n");
|
||||
exit(0);
|
||||
} else {
|
||||
std::cout << "Ready to sim" << std::endl;
|
||||
std::printf("Open Image Successfully!!!\n");
|
||||
}
|
||||
|
||||
// Read image
|
||||
auto buf = std::make_unique<uint8_t[]>(2 * IN_SIZE);
|
||||
in_image.read((char *)buf.get(), IN_SIZE * 2);
|
||||
in_image.close();
|
||||
// Reshape data
|
||||
auto image = std::make_unique<uint16_t[]>(IN_SIZE);
|
||||
// Read and Transform Image
|
||||
std::vector<uint16_t> in_image(IN_SIZE);
|
||||
uint8_t *buf = new uint8_t[2 * IN_SIZE];
|
||||
image.read((char *)buf, 2 * IN_SIZE);
|
||||
uint32_t i = 0;
|
||||
for (int y = 0; y < IN_HEIGHT; y++) {
|
||||
for (int x = 0; x < IN_WIDTH; x++) {
|
||||
image[y * IN_WIDTH + x] = (uint16_t)buf[i] + ((uint16_t)buf[i + 1] << 8);
|
||||
in_image[y * IN_WIDTH + x] =
|
||||
(uint16_t)buf[i] + ((uint16_t)buf[i + 1] << 8);
|
||||
i += 2;
|
||||
}
|
||||
}
|
||||
std::cout << "Finish Reading data" << std::endl;
|
||||
// Close and delete image
|
||||
image.close();
|
||||
delete[] buf;
|
||||
std::printf("Finish Reading Image\n");
|
||||
|
||||
// This is a more complicated example, please also see the simpler
|
||||
// examples/make_hello_c.
|
||||
|
@ -354,113 +270,112 @@ int sc_main(int argc, char *argv[]) {
|
|||
// Define clocks
|
||||
sc_clock clk{"clk", 10, SC_NS, 0.5, 3, SC_NS, true};
|
||||
// Define interconnect
|
||||
sc_signal<bool> reset;
|
||||
|
||||
sc_signal<bool> in_en;
|
||||
sc_signal<bool> rst;
|
||||
// ISP Modules in ports
|
||||
sc_signal<bool> in_valid;
|
||||
sc_signal<bool> in_ready;
|
||||
// sc_signal<bool> in_receive;
|
||||
sc_signal<uint32_t> in_data[3];
|
||||
|
||||
sc_signal<bool> out_clk;
|
||||
sc_signal<bool> out_en;
|
||||
// ISP Modules out ports
|
||||
sc_signal<bool> out_valid;
|
||||
sc_signal<bool> out_ready;
|
||||
sc_signal<bool> out_receive;
|
||||
sc_signal<uint32_t> out_data;
|
||||
|
||||
// ISP Modules Enable Ports
|
||||
sc_signal<bool> blender_enable;
|
||||
sc_signal<bool> gamma_enable;
|
||||
sc_signal<bool> white_enable;
|
||||
sc_signal<bool> saturation_enable;
|
||||
// ISP Modules Configurations Ports
|
||||
sc_signal<uint32_t> gain_red;
|
||||
sc_signal<uint32_t> gain_green;
|
||||
sc_signal<uint32_t> gain_blue;
|
||||
|
||||
sc_signal<bool> gamma_enable;
|
||||
sc_signal<uint32_t> gamma_inverse;
|
||||
sc_signal<uint32_t> gamma_table[256];
|
||||
|
||||
sc_signal<uint32_t> white_gain[3];
|
||||
sc_signal<uint32_t> flame_rate;
|
||||
sc_signal<bool> white_enable;
|
||||
|
||||
sc_signal<bool> saturation_enable;
|
||||
sc_signal<uint32_t> saturation_increase;
|
||||
|
||||
sc_signal<bool> flag_done;
|
||||
sc_signal<uint32_t> saturation_inc;
|
||||
sc_signal<uint32_t> gamma_table[256];
|
||||
sc_signal<uint32_t> white_gain[3];
|
||||
|
||||
// Construct the Verilated model, from inside Visp.h
|
||||
// Using unique_ptr is similar to "Visp* isp = new Visp" then deleting at
|
||||
// end
|
||||
const std::unique_ptr<Visp> isp{new Visp{"isp"}};
|
||||
// Attach Visp's signals to this upper model
|
||||
isp->clk(clk);
|
||||
isp->reset(reset);
|
||||
isp->in_en(in_en);
|
||||
isp->in_ready(in_ready);
|
||||
// isp->in_receive(in_receive);
|
||||
isp->in_data[0](in_data[0]);
|
||||
isp->in_data[1](in_data[1]);
|
||||
isp->in_data[2](in_data[2]);
|
||||
isp->out_en(out_en);
|
||||
isp->out_ready(out_ready);
|
||||
isp->out_receive(out_receive);
|
||||
isp->out_data(out_data);
|
||||
Visp isp("Visp");
|
||||
// isp.clk(clk);
|
||||
// isp.reset(rst);
|
||||
// // Connect input signal
|
||||
// isp.in_valid(in_valid);
|
||||
// isp.in_ready(in_ready);
|
||||
// for (int i = 0; i < 3; i++)
|
||||
// isp.in_data[i](in_data[i]);
|
||||
// // Connect output signal
|
||||
// isp.out_valid(out_valid);
|
||||
// isp.out_ready(out_ready);
|
||||
// isp.out_data(out_data);
|
||||
// // Connect ISP modules enable signal
|
||||
// isp.blender_enable(blender_enable);
|
||||
// // Connect ISP modules configuration signal
|
||||
// isp.gain_red(gain_red);
|
||||
// isp.gain_green(gain_green);
|
||||
// isp.gain_blue(gain_blue);
|
||||
|
||||
isp->gain_red(gain_red);
|
||||
isp->gain_green(gain_green);
|
||||
isp->gain_blue(gain_blue);
|
||||
isp->blender_enable(blender_enable);
|
||||
// ISP Old Version
|
||||
isp.clk(clk);
|
||||
isp.reset(rst);
|
||||
isp.in_en(in_valid);
|
||||
isp.in_ready(in_ready);
|
||||
for (int i = 0; i < 3; i++)
|
||||
isp.in_data[i](in_data[i]);
|
||||
sc_signal<bool> out_receive;
|
||||
isp.out_receive(out_receive);
|
||||
isp.out_en(out_valid);
|
||||
isp.out_ready(out_ready);
|
||||
isp.out_data(out_data);
|
||||
isp.blender_enable(blender_enable);
|
||||
isp.gamma_enable(gamma_enable);
|
||||
isp.white_enable(white_enable);
|
||||
isp.saturation_enable(saturation_enable);
|
||||
isp.gain_red(gain_red);
|
||||
isp.gain_green(gain_green);
|
||||
isp.gain_blue(gain_blue);
|
||||
isp.flame_rate(flame_rate);
|
||||
isp.saturation_inc(saturation_inc);
|
||||
for (int i = 0; i < 256; i++)
|
||||
isp.gamma_table[i](gamma_table[i]);
|
||||
for (int i = 0; i < 3; i++)
|
||||
isp.white_gain[i](white_gain[i]);
|
||||
|
||||
isp->gamma_enable(gamma_enable);
|
||||
// isp->gamma_inverse(gamma_inverse);
|
||||
// Construct testbench module
|
||||
TB_ISP tb_isp("tb_isp");
|
||||
tb_isp.image = std::move(in_image);
|
||||
tb_isp.clk(clk);
|
||||
tb_isp.rst(rst);
|
||||
// Connect input signal
|
||||
tb_isp.in_valid(out_valid);
|
||||
tb_isp.in_ready(out_ready);
|
||||
tb_isp.in_data(out_data);
|
||||
// Connect output signal
|
||||
tb_isp.out_valid(in_valid);
|
||||
tb_isp.out_ready(in_ready);
|
||||
for (int i = 0; i < 3; i++)
|
||||
tb_isp.out_data[i](in_data[i]);
|
||||
|
||||
isp->white_enable(white_enable);
|
||||
isp->flame_rate(flame_rate);
|
||||
isp->white_gain[0](white_gain[0]);
|
||||
isp->white_gain[1](white_gain[1]);
|
||||
isp->white_gain[2](white_gain[2]);
|
||||
|
||||
isp->saturation_enable(saturation_enable);
|
||||
isp->saturation_inc(saturation_increase);
|
||||
|
||||
blender_enable = true; // enable color correction
|
||||
// Set ISP modules parameters
|
||||
// Color Blender
|
||||
blender_enable = true;
|
||||
gain_red = static_cast<uint32_t>(color_gain.red * std::pow(2, 8));
|
||||
gain_green = static_cast<uint32_t>(color_gain.green * std::pow(2, 8));
|
||||
gain_blue = static_cast<uint32_t>(color_gain.blue * std::pow(2, 8));
|
||||
|
||||
// Gamma table
|
||||
gamma_enable = true;
|
||||
gamma_inverse = static_cast<uint32_t>((1.0 / gamma_value) * std::pow(2, 8));
|
||||
for (int i = 0; i < 256; i++) {
|
||||
// calculate gamma table
|
||||
isp->gamma_table[i](gamma_table[i]);
|
||||
gamma_table[i] =
|
||||
static_cast<uint32_t>(255 * pow(i / 255.0, 1.0 / gamma_value));
|
||||
}
|
||||
|
||||
// White Correction
|
||||
white_enable = true;
|
||||
flame_rate = 0;
|
||||
white_gain[0] = 255;
|
||||
white_gain[1] = 255;
|
||||
white_gain[2] = 255;
|
||||
|
||||
// Saturation Correction
|
||||
saturation_enable = true;
|
||||
saturation_increase =
|
||||
(int32_t)((saturation_inc >= 0) ? (saturation_inc * std::pow(2, 8))
|
||||
: (saturation_inc * std::pow(2, 8)));
|
||||
|
||||
// Construct testbench module
|
||||
TB_ISP tb_isp("tb_isp");
|
||||
tb_isp.clk(clk);
|
||||
tb_isp.reset(reset);
|
||||
tb_isp.in_ready(out_ready);
|
||||
tb_isp.in_receive(out_receive);
|
||||
tb_isp.out_en(in_en);
|
||||
tb_isp.out_ready(in_ready);
|
||||
// tb_isp.out_receceive(in_receive);
|
||||
tb_isp.out_data[0](in_data[0]);
|
||||
tb_isp.out_data[1](in_data[1]);
|
||||
tb_isp.out_data[2](in_data[2]);
|
||||
tb_isp.im_en(out_en);
|
||||
tb_isp.im_data(out_data);
|
||||
tb_isp.is_done(flag_done);
|
||||
tb_isp.image = std::move(image);
|
||||
saturation_inc = (int32_t)((sat_inc >= 0) ? (sat_inc * std::pow(2, 8))
|
||||
: (sat_inc * std::pow(2, 8)));
|
||||
|
||||
// You must do one evaluation before enabling waves, in order to allow
|
||||
// SystemC to interconnect everything for testing.
|
||||
|
@ -473,26 +388,27 @@ int sc_main(int argc, char *argv[]) {
|
|||
if (flag && 0 == std::strcmp(flag, "+trace")) {
|
||||
std::cout << "Enabling waves into logs/vlt_dump.vcd...\n";
|
||||
tfp = new VerilatedVcdSc;
|
||||
isp->trace(tfp, 99); // Trace 99 levels of hierarchy
|
||||
isp.trace(tfp, 99); // Trace 99 levels of hierarchy
|
||||
Verilated::mkdir("logs");
|
||||
tfp->open("logs/vlt_dump.vcd");
|
||||
}
|
||||
|
||||
// Simulate until $finish
|
||||
std::cout << "Ready to simulate!\n";
|
||||
while (!Verilated::gotFinish()) {
|
||||
// Flush the wave files each cycle so we can immediately see the OUTPUT_DIR
|
||||
// Flush the wave files each cycle so we can immediately see the output
|
||||
// Don't do this in "real" programs, do it in an abort() handler instead
|
||||
if (tfp)
|
||||
tfp->flush();
|
||||
|
||||
// Apply inputs
|
||||
if (sc_time_stamp() < sc_time(10, SC_NS)) {
|
||||
reset.write(1); // Assert reset
|
||||
rst.write(1); // Assert reset
|
||||
} else {
|
||||
reset.write(0); // Deassert reset
|
||||
rst.write(0); // Deassert reset
|
||||
}
|
||||
|
||||
if (flag_done.read())
|
||||
if (tb_isp.is_done)
|
||||
break;
|
||||
|
||||
// Simulate 1ns
|
||||
|
@ -500,7 +416,7 @@ int sc_main(int argc, char *argv[]) {
|
|||
}
|
||||
|
||||
// Final model cleanup
|
||||
isp->final();
|
||||
isp.final();
|
||||
|
||||
// Close trace if opened
|
||||
if (tfp) {
|
||||
|
|
|
@ -0,0 +1,525 @@
|
|||
// For std::unique_ptr
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
|
||||
// SystemC global header
|
||||
#include <string>
|
||||
#include <systemc>
|
||||
|
||||
// Include common routines
|
||||
#include <sys/stat.h> // mkdir
|
||||
#include <vector>
|
||||
#include <verilated.h>
|
||||
#include <verilated_vcd_sc.h>
|
||||
|
||||
// Include model header, generated from Verilating "isp.v"
|
||||
#include "Visp.h"
|
||||
|
||||
// Handle file
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
|
||||
// math
|
||||
#include <cmath>
|
||||
|
||||
#include "bitmap_image.hpp"
|
||||
|
||||
static const uint16_t IN_WIDTH = 1936;
|
||||
static const uint16_t IN_HEIGHT = 1088;
|
||||
static const uint32_t IN_SIZE = (IN_WIDTH * IN_HEIGHT);
|
||||
static const uint16_t OUT_WIDTH = 1920;
|
||||
static const uint16_t OUT_HEIGHT = 1080;
|
||||
static const uint32_t OUT_SIZE = (OUT_WIDTH * OUT_HEIGHT);
|
||||
static const uint32_t FLAMES = 2;
|
||||
|
||||
// Input image path and Output directory path
|
||||
#ifndef INPUT_IMG
|
||||
const char *INPUT_IMG = "./src/transform/test.bin";
|
||||
#endif
|
||||
#ifndef OUTPUT_DIR
|
||||
const char *OUTPUT_DIR = "./logs/";
|
||||
#endif
|
||||
|
||||
// color gain for correcting color
|
||||
struct color_gain {
|
||||
double red;
|
||||
double green;
|
||||
double blue;
|
||||
} color_gain{1.1, 0.7, 1.3}, white_gain;
|
||||
|
||||
static const double gamma_value = 2.2;
|
||||
static const double saturation_inc = 0.5;
|
||||
static const double contrast = 1.2;
|
||||
// static const double white_radio = 0.1;
|
||||
|
||||
using namespace sc_core;
|
||||
using namespace sc_dt;
|
||||
|
||||
bool picProcess(uint32_t *image, uint16_t number);
|
||||
|
||||
SC_MODULE(TB_ISP) {
|
||||
sc_in_clk clk;
|
||||
sc_in<bool> reset;
|
||||
|
||||
sc_in<bool> in_ready;
|
||||
sc_in<bool> in_receive;
|
||||
sc_out<bool> out_en;
|
||||
sc_out<uint32_t> out_data[3];
|
||||
|
||||
sc_in<bool> im_en;
|
||||
sc_out<bool> out_ready;
|
||||
// sc_out<bool> out_receceive;
|
||||
sc_in<uint32_t> im_data;
|
||||
|
||||
sc_out<bool> is_done;
|
||||
std::vector<uint16_t> image; // the data of image
|
||||
std::vector<uint32_t> process_image = std::vector<uint32_t>(
|
||||
OUT_SIZE, 0); // after isp process, the data of image
|
||||
|
||||
SC_CTOR(TB_ISP) {
|
||||
SC_CTHREAD(send_Data, clk.pos());
|
||||
reset_signal_is(reset, true);
|
||||
|
||||
SC_CTHREAD(read_Data, clk.pos());
|
||||
}
|
||||
|
||||
void send_Data(void) {
|
||||
uint16_t pos_x = 0, pos_y = 0, cnt_flame = 0;
|
||||
bool is_finish = false;
|
||||
while (true) {
|
||||
if (in_ready.read() && !is_finish) {
|
||||
out_en.write(1);
|
||||
|
||||
printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y,
|
||||
image[(pos_y + 0) * IN_WIDTH + pos_x]);
|
||||
printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y,
|
||||
image[(pos_y + 1) * IN_WIDTH + pos_x]);
|
||||
printf("x=%4d, y=%4d, data=0x%04x\n", pos_x, pos_y,
|
||||
image[(pos_y + 2) * IN_WIDTH + pos_x]);
|
||||
|
||||
out_data[0].write(image[(pos_y + 0) * IN_WIDTH + pos_x]);
|
||||
out_data[1].write(image[(pos_y + 1) * IN_WIDTH + pos_x]);
|
||||
out_data[2].write(image[(pos_y + 2) * IN_WIDTH + pos_x]);
|
||||
|
||||
pos_x++;
|
||||
if (pos_x >= IN_WIDTH) {
|
||||
pos_x = 0;
|
||||
pos_y++;
|
||||
}
|
||||
if (pos_y >= IN_HEIGHT - 1) {
|
||||
pos_y = 0;
|
||||
cnt_flame++;
|
||||
}
|
||||
if (cnt_flame >= FLAMES) {
|
||||
is_finish = true;
|
||||
}
|
||||
} else {
|
||||
out_en.write(0);
|
||||
}
|
||||
|
||||
wait();
|
||||
}
|
||||
}
|
||||
|
||||
void read_Data(void) {
|
||||
is_done.write(0);
|
||||
uint32_t pos_x = 0, pos_y = 0, cnt_flame = 0;
|
||||
uint32_t last_data = 0, cnt = 0;
|
||||
bool is_finish = false;
|
||||
while (true) {
|
||||
if (im_en.read() && !is_finish) {
|
||||
out_ready.write(false);
|
||||
|
||||
process_image[pos_y * OUT_WIDTH + pos_x] = im_data.read();
|
||||
pos_x++;
|
||||
|
||||
if (pos_x >= OUT_WIDTH) {
|
||||
pos_x = 0;
|
||||
pos_y++;
|
||||
}
|
||||
if (pos_y >= OUT_HEIGHT) {
|
||||
pos_y = 0;
|
||||
saveData(
|
||||
("output_img_" + std::to_string(cnt_flame) + ".bmp").c_str());
|
||||
cnt_flame++;
|
||||
}
|
||||
if (cnt_flame >= FLAMES) {
|
||||
is_finish = true;
|
||||
}
|
||||
} else {
|
||||
out_ready.write(true);
|
||||
// out_receceive.write(false);
|
||||
}
|
||||
|
||||
// when data didn't change some time, it end
|
||||
if (last_data == im_data.read() && is_finish) {
|
||||
cnt++;
|
||||
if (cnt >= 100000L) {
|
||||
is_done.write(1);
|
||||
printf("x=%d, y=%d\n", pos_x, pos_y);
|
||||
}
|
||||
} else {
|
||||
cnt = 0;
|
||||
}
|
||||
last_data = im_data.read();
|
||||
|
||||
wait();
|
||||
}
|
||||
}
|
||||
|
||||
bool saveData(const char *name) {
|
||||
bool ret = true;
|
||||
|
||||
// Check Image Size
|
||||
if (process_image.size() > OUT_SIZE) {
|
||||
std::cout << "Process Image Over Size!!!\n"
|
||||
<< "Image Size:" << process_image.size() << "\n";
|
||||
return false;
|
||||
}
|
||||
|
||||
// Transform isp image
|
||||
// std::vector<uint8_t> bmp_image(3 * OUT_SIZE);
|
||||
// for (int i = 0; i < OUT_SIZE; i++) {
|
||||
// bmp_image[3 * i + 0] = (process_image[i] & 0x00ff0000) >> 16;
|
||||
// bmp_image[3 * i + 1] = (process_image[i] & 0x0000ff00) >> 8;
|
||||
// bmp_image[3 * i + 2] = (process_image[i] & 0x000000ff) >> 0;
|
||||
// }
|
||||
|
||||
// Write BMP image
|
||||
bitmap_image bmp(OUT_WIDTH, OUT_HEIGHT);
|
||||
if (!bmp) {
|
||||
std::cout << "Output Image Open Failed!!!\n";
|
||||
return false;
|
||||
}
|
||||
for (int y = 0; y < OUT_HEIGHT; y++)
|
||||
for (int x = 0; x < OUT_WIDTH; x++)
|
||||
bmp.set_pixel(x, y,
|
||||
(process_image[y * OUT_WIDTH + x] & 0x00ff0000) >> 16,
|
||||
(process_image[y * OUT_WIDTH + x] & 0x0000ff00) >> 8,
|
||||
(process_image[y * OUT_WIDTH + x] & 0x000000ff) >> 0);
|
||||
bmp.save_image(std::string(OUTPUT_DIR) + name);
|
||||
return ret;
|
||||
}
|
||||
};
|
||||
|
||||
// bool picProcess(uint32_t *image, uint16_t number) {
|
||||
// uint8_t *data = new uint8_t[OUT_WIDTH * OUT_HEIGHT * 3]; //
|
||||
// RGB24格式像素数据
|
||||
|
||||
// // software algorthms analyze
|
||||
// uint32_t red_total = 0, green_total = 0, blue_total = 0;
|
||||
// uint8_t red_max = 0, green_max = 0, blue_max = 0;
|
||||
// for (int32_t y = 0; y < OUT_HEIGHT; ++y) {
|
||||
// for (int32_t x = 0; x < OUT_WIDTH; ++x) {
|
||||
// int32_t index = (y * OUT_WIDTH + x) * 3;
|
||||
|
||||
// uint8_t red = (image[y * OUT_WIDTH + x] & 0x00ff0000) >> 16;
|
||||
// uint8_t green = (image[y * OUT_WIDTH + x] & 0x0000ff00) >> 8;
|
||||
// uint8_t blue = (image[y * OUT_WIDTH + x] & 0x000000ff);
|
||||
|
||||
// // Adjust gamma line
|
||||
// // red = 255 * std::pow(red / 255.0, 1 / gamma_value);
|
||||
// // green = 255 * std::pow(green / 255.0, 1 / gamma_value);
|
||||
// // blue = 255 * std::pow(blue / 255.0, 1 / gamma_value);
|
||||
|
||||
// // Calculate white balance data
|
||||
// // red_max = std::max(red_max, red);
|
||||
// // green_max = std::max(green_max, green);
|
||||
// // blue_max = std::max(blue_max, blue);
|
||||
// // red_total += red;
|
||||
// // green_total += green;
|
||||
// // blue_total += blue;
|
||||
|
||||
// // Adjust vibrance
|
||||
// // uint8_t max = std::max({red, green, blue});
|
||||
// // uint8_t min = std::min({red, green, blue});
|
||||
// // double delta = (max - min) / 255.0;
|
||||
// // double value = (max + min) / 255.0;
|
||||
// // if (delta != 0) {
|
||||
// // double L = value / 2.0;
|
||||
// // // double S = (L <= 0.5) ? delta / value : delta / (2 -
|
||||
// // value); double S = delta / max; double alpha = 0.0; if
|
||||
// // (saturation_inc >= 0) {
|
||||
// // if ((saturation_inc + S) >= 1)
|
||||
// // alpha = S;
|
||||
// // else
|
||||
// // alpha = 1 - saturation_inc;
|
||||
// // alpha = 1 / alpha - 1;
|
||||
// // red = static_cast<uchar>(red + (red - L * 255) * alpha);
|
||||
// // green =
|
||||
// // static_cast<uchar>(green + (green - L * 255) *
|
||||
// // alpha);
|
||||
// // blue = static_cast<uchar>(blue + (blue - L * 255) *
|
||||
// // alpha);
|
||||
// // } else {
|
||||
// // alpha = saturation_inc;
|
||||
// // red = static_cast<uchar>(L * 255 +
|
||||
// // (red - L * 255) * (1 + alpha));
|
||||
// // green = static_cast<uchar>(L * 255 +
|
||||
// // (green - L * 255) * (1 +
|
||||
// // alpha));
|
||||
// // blue = static_cast<uchar>(L * 255 +
|
||||
// // (blue - L * 255) * (1 +
|
||||
// // alpha));
|
||||
// // }
|
||||
// // }
|
||||
|
||||
// // Contrast enhancement
|
||||
// // red = static_cast<uchar>(contrast * (red - 128) + 128);
|
||||
// // green = static_cast<uchar>(contrast * (green - 128) + 128);
|
||||
// // blue = static_cast<uchar>(contrast * (blue - 128) + 128);
|
||||
|
||||
// // save data
|
||||
// data[index + 0] = red; // R
|
||||
// data[index + 1] = green; // G
|
||||
// data[index + 2] = blue; // B
|
||||
// }
|
||||
// }
|
||||
|
||||
// // Adjust White Balance : Grey World Color Correction
|
||||
// // double K = static_cast<double>(red_total + green_total + blue_total) /
|
||||
// // (3 * OUT_SIZE);
|
||||
// // white_gain.red = static_cast<double>(K * OUT_SIZE) / red_total;
|
||||
// // white_gain.green = static_cast<double>(K * OUT_SIZE) / green_total;
|
||||
// // white_gain.blue = static_cast<double>(K * OUT_SIZE) / blue_total;
|
||||
// // printf("Gain: red = %f, green = %f, blue = %f", white_gain.red,
|
||||
// // white_gain.green, white_gain.blue);
|
||||
// // for (int32_t y = 0; y < OUT_HEIGHT; ++y) {
|
||||
// // for (int32_t x = 0; x < OUT_WIDTH; ++x) {
|
||||
// // int32_t index = (y * OUT_WIDTH + x) * 3;
|
||||
|
||||
// // data[index + 0] =
|
||||
// // static_cast<uint8_t>(white_gain.red * data[index + 0]);
|
||||
// // data[index + 1] =
|
||||
// // static_cast<uint8_t>(white_gain.green * data[index + 1]);
|
||||
// // data[index + 2] =
|
||||
// // static_cast<uint8_t>(white_gain.blue * data[index + 2]);
|
||||
// // }
|
||||
// // }
|
||||
|
||||
// // save to bmp
|
||||
// std::cout << "Ready to save raw RGB image" << std::endl;
|
||||
// char file_name[64] = {0};
|
||||
// snprintf(file_name, sizeof(file_name), "pic_%d.bmp", number);
|
||||
// write_bmp(file_name, data, OUT_WIDTH, OUT_HEIGHT);
|
||||
// delete[] data;
|
||||
|
||||
// return true;
|
||||
// }
|
||||
|
||||
int sc_main(int argc, char *argv[]) {
|
||||
std::printf("Enter into sc_main\n");
|
||||
|
||||
// Open Image
|
||||
std::ifstream image;
|
||||
image.open(INPUT_IMG, std::ios::in | std::ios::binary);
|
||||
// Check image whether is open
|
||||
if (!image.is_open()) {
|
||||
std::printf("Open Image Failed!!!\n");
|
||||
exit(0);
|
||||
} else {
|
||||
std::printf("Open Image Successfully!!!\n");
|
||||
}
|
||||
|
||||
// Read and Transform Image
|
||||
std::vector<uint16_t> in_image(IN_SIZE);
|
||||
uint8_t *buf = new uint8_t[2 * IN_SIZE];
|
||||
image.read((char *)buf, 2 * IN_SIZE);
|
||||
uint32_t i = 0;
|
||||
for (int y = 0; y < IN_HEIGHT; y++) {
|
||||
for (int x = 0; x < IN_WIDTH; x++) {
|
||||
in_image[y * IN_WIDTH + x] =
|
||||
(uint16_t)buf[i] + ((uint16_t)buf[i + 1] << 8);
|
||||
i += 2;
|
||||
}
|
||||
}
|
||||
// Close and delete image
|
||||
image.close();
|
||||
delete[] buf;
|
||||
std::printf("Finish Reading Image\n");
|
||||
|
||||
// This is a more complicated example, please also see the simpler
|
||||
// examples/make_hello_c.
|
||||
|
||||
// Create logs/ directory in case we have traces to put under it
|
||||
Verilated::mkdir("logs");
|
||||
|
||||
// Set debug level, 0 is off, 9 is highest presently used
|
||||
// May be overridden by commandArgs argument parsing
|
||||
Verilated::debug(0);
|
||||
|
||||
// Randomization reset policy
|
||||
// May be overridden by commandArgs argument parsing
|
||||
Verilated::randReset(2);
|
||||
|
||||
// Before any evaluation, need to know to calculate those signals only used
|
||||
// for tracing
|
||||
Verilated::traceEverOn(true);
|
||||
|
||||
// Pass arguments so Verilated code can see them, e.g. $value$plusargs
|
||||
// This needs to be called before you create any model
|
||||
Verilated::commandArgs(argc, argv);
|
||||
|
||||
// General logfile
|
||||
std::ios::sync_with_stdio();
|
||||
|
||||
// Define clocks
|
||||
sc_clock clk{"clk", 10, SC_NS, 0.5, 3, SC_NS, true};
|
||||
// Define interconnect
|
||||
sc_signal<bool> reset;
|
||||
|
||||
sc_signal<bool> in_en;
|
||||
sc_signal<bool> in_ready;
|
||||
// sc_signal<bool> in_receive;
|
||||
sc_signal<uint32_t> in_data[3];
|
||||
|
||||
sc_signal<bool> out_clk;
|
||||
sc_signal<bool> out_en;
|
||||
sc_signal<bool> out_ready;
|
||||
sc_signal<bool> out_receive;
|
||||
sc_signal<uint32_t> out_data;
|
||||
|
||||
sc_signal<bool> blender_enable;
|
||||
sc_signal<uint32_t> gain_red;
|
||||
sc_signal<uint32_t> gain_green;
|
||||
sc_signal<uint32_t> gain_blue;
|
||||
|
||||
sc_signal<bool> gamma_enable;
|
||||
sc_signal<uint32_t> gamma_inverse;
|
||||
sc_signal<uint32_t> gamma_table[256];
|
||||
|
||||
sc_signal<uint32_t> white_gain[3];
|
||||
sc_signal<uint32_t> flame_rate;
|
||||
sc_signal<bool> white_enable;
|
||||
|
||||
sc_signal<bool> saturation_enable;
|
||||
sc_signal<uint32_t> saturation_increase;
|
||||
|
||||
sc_signal<bool> flag_done;
|
||||
|
||||
// Construct the Verilated model, from inside Visp.h
|
||||
// Using unique_ptr is similar to "Visp* isp = new Visp" then deleting at
|
||||
// end
|
||||
const std::unique_ptr<Visp> isp{new Visp{"isp"}};
|
||||
// Attach Visp's signals to this upper model
|
||||
isp->clk(clk);
|
||||
isp->reset(reset);
|
||||
isp->in_en(in_en);
|
||||
isp->in_ready(in_ready);
|
||||
// isp->in_receive(in_receive);
|
||||
isp->in_data[0](in_data[0]);
|
||||
isp->in_data[1](in_data[1]);
|
||||
isp->in_data[2](in_data[2]);
|
||||
isp->out_en(out_en);
|
||||
isp->out_ready(out_ready);
|
||||
isp->out_receive(out_receive);
|
||||
isp->out_data(out_data);
|
||||
|
||||
isp->gain_red(gain_red);
|
||||
isp->gain_green(gain_green);
|
||||
isp->gain_blue(gain_blue);
|
||||
isp->blender_enable(blender_enable);
|
||||
|
||||
isp->gamma_enable(gamma_enable);
|
||||
// isp->gamma_inverse(gamma_inverse);
|
||||
|
||||
isp->white_enable(white_enable);
|
||||
isp->flame_rate(flame_rate);
|
||||
isp->white_gain[0](white_gain[0]);
|
||||
isp->white_gain[1](white_gain[1]);
|
||||
isp->white_gain[2](white_gain[2]);
|
||||
|
||||
isp->saturation_enable(saturation_enable);
|
||||
isp->saturation_inc(saturation_increase);
|
||||
|
||||
blender_enable = true; // enable color correction
|
||||
gain_red = static_cast<uint32_t>(color_gain.red * std::pow(2, 8));
|
||||
gain_green = static_cast<uint32_t>(color_gain.green * std::pow(2, 8));
|
||||
gain_blue = static_cast<uint32_t>(color_gain.blue * std::pow(2, 8));
|
||||
|
||||
gamma_enable = true;
|
||||
gamma_inverse = static_cast<uint32_t>((1.0 / gamma_value) * std::pow(2, 8));
|
||||
for (int i = 0; i < 256; i++) {
|
||||
// calculate gamma table
|
||||
isp->gamma_table[i](gamma_table[i]);
|
||||
gamma_table[i] =
|
||||
static_cast<uint32_t>(255 * pow(i / 255.0, 1.0 / gamma_value));
|
||||
}
|
||||
|
||||
white_enable = true;
|
||||
flame_rate = 0;
|
||||
white_gain[0] = 255;
|
||||
white_gain[1] = 255;
|
||||
white_gain[2] = 255;
|
||||
|
||||
saturation_enable = true;
|
||||
saturation_increase =
|
||||
(int32_t)((saturation_inc >= 0) ? (saturation_inc * std::pow(2, 8))
|
||||
: (saturation_inc * std::pow(2, 8)));
|
||||
|
||||
// Construct testbench module
|
||||
TB_ISP tb_isp("tb_isp");
|
||||
tb_isp.clk(clk);
|
||||
tb_isp.reset(reset);
|
||||
tb_isp.in_ready(out_ready);
|
||||
tb_isp.in_receive(out_receive);
|
||||
tb_isp.out_en(in_en);
|
||||
tb_isp.out_ready(in_ready);
|
||||
// tb_isp.out_receceive(in_receive);
|
||||
tb_isp.out_data[0](in_data[0]);
|
||||
tb_isp.out_data[1](in_data[1]);
|
||||
tb_isp.out_data[2](in_data[2]);
|
||||
tb_isp.im_en(out_en);
|
||||
tb_isp.im_data(out_data);
|
||||
tb_isp.is_done(flag_done);
|
||||
tb_isp.image = std::move(in_image);
|
||||
|
||||
// You must do one evaluation before enabling waves, in order to allow
|
||||
// SystemC to interconnect everything for testing.
|
||||
sc_start(SC_ZERO_TIME);
|
||||
|
||||
// If verilator was invoked with --trace argument,
|
||||
// and if at run time passed the +trace argument, turn on tracing
|
||||
VerilatedVcdSc *tfp = nullptr;
|
||||
const char *flag = Verilated::commandArgsPlusMatch("trace");
|
||||
if (flag && 0 == std::strcmp(flag, "+trace")) {
|
||||
std::cout << "Enabling waves into logs/vlt_dump.vcd...\n";
|
||||
tfp = new VerilatedVcdSc;
|
||||
isp->trace(tfp, 99); // Trace 99 levels of hierarchy
|
||||
Verilated::mkdir("logs");
|
||||
tfp->open("logs/vlt_dump.vcd");
|
||||
}
|
||||
|
||||
// Simulate until $finish
|
||||
while (!Verilated::gotFinish()) {
|
||||
// Flush the wave files each cycle so we can immediately see the OUTPUT_DIR
|
||||
// Don't do this in "real" programs, do it in an abort() handler instead
|
||||
if (tfp)
|
||||
tfp->flush();
|
||||
|
||||
// Apply inputs
|
||||
if (sc_time_stamp() < sc_time(10, SC_NS)) {
|
||||
reset.write(1); // Assert reset
|
||||
} else {
|
||||
reset.write(0); // Deassert reset
|
||||
}
|
||||
|
||||
if (flag_done.read())
|
||||
break;
|
||||
|
||||
// Simulate 1ns
|
||||
sc_start(1, SC_NS);
|
||||
}
|
||||
|
||||
// Final model cleanup
|
||||
isp->final();
|
||||
|
||||
// Close trace if opened
|
||||
if (tfp) {
|
||||
tfp->close();
|
||||
tfp = nullptr;
|
||||
}
|
||||
|
||||
// Return good completion status
|
||||
return 0;
|
||||
}
|
|
@ -7,6 +7,8 @@
|
|||
#include <iostream>
|
||||
|
||||
// SystemC global header
|
||||
#include "sysc/communication/sc_signal.h"
|
||||
#include "sysc/kernel/sc_module.h"
|
||||
#include <systemc>
|
||||
|
||||
// Include common routines
|
||||
|
@ -18,12 +20,10 @@
|
|||
#include <verilated_vcd_sc.h>
|
||||
|
||||
// Include model header, generated from Verilating "isp.v"
|
||||
#include "Visp.h"
|
||||
#include "Visp_Pipeline.h"
|
||||
|
||||
// Write Pictures
|
||||
#include "bmp.hpp"
|
||||
#include "sysc/communication/sc_signal.h"
|
||||
#include "sysc/kernel/sc_module.h"
|
||||
#include "bitmap_image.hpp"
|
||||
|
||||
// Image Parameters
|
||||
static const uint16_t IN_WIDTH = 1936;
|
||||
|
@ -32,13 +32,17 @@ static const uint32_t IN_SIZE = (IN_WIDTH * IN_HEIGHT);
|
|||
static const uint16_t OUT_WIDTH = 1920;
|
||||
static const uint16_t OUT_HEIGHT = 1080;
|
||||
static const uint32_t OUT_SIZE = (OUT_WIDTH * OUT_HEIGHT);
|
||||
static const uint32_t CNT_FLAME = 2;
|
||||
static const uint32_t FLAMES = 2;
|
||||
|
||||
// Input image path and Output directory path
|
||||
const char *input = "./src/transform/test.bin";
|
||||
const char *output = "./logs/";
|
||||
#ifndef INPUT_IMG
|
||||
const char *INPUT_IMG = "./src/transform/test.bin";
|
||||
#endif
|
||||
#ifndef OUTPUT_DIR
|
||||
const char *OUTPUT_DIR = "./logs/";
|
||||
#endif
|
||||
|
||||
// Modules Configuration
|
||||
// color gain for correcting color
|
||||
struct color_gain {
|
||||
double red;
|
||||
double green;
|
||||
|
@ -101,17 +105,20 @@ SC_MODULE(TB_ISP) {
|
|||
image[(pos_y + 1) * IN_WIDTH + pos_x]);
|
||||
std::printf("x=%4d, y=%4d, data=0x%04x\n", pos_x, pos_y,
|
||||
image[(pos_y + 2) * IN_WIDTH + pos_x]);
|
||||
pos_x++;
|
||||
|
||||
// calculate position and recognize when to finish
|
||||
if (++pos_x >= IN_WIDTH) {
|
||||
if (pos_x >= IN_WIDTH) {
|
||||
pos_x = 0;
|
||||
if (++pos_y >= IN_HEIGHT - 2) { // demosaic window is 3x3
|
||||
pos_y++;
|
||||
}
|
||||
if (pos_y >= IN_HEIGHT - 1) {
|
||||
pos_y = 0;
|
||||
if (++cnt_flame >= CNT_FLAME) {
|
||||
cnt_flame++;
|
||||
}
|
||||
if (cnt_flame >= FLAMES) {
|
||||
is_finish = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
out_valid = false;
|
||||
}
|
||||
|
@ -139,18 +146,20 @@ SC_MODULE(TB_ISP) {
|
|||
process_image[pos_y * OUT_WIDTH + pos_x] = in_data;
|
||||
|
||||
// calculate position
|
||||
if (++pos_x >= OUT_WIDTH) {
|
||||
pos_x = 0;
|
||||
if (++pos_y >= OUT_HEIGHT) {
|
||||
pos_y = 0;
|
||||
if (++cnt_flame >= CNT_FLAME) {
|
||||
is_finish = true;
|
||||
}
|
||||
pos_x++;
|
||||
|
||||
// Save image
|
||||
if (pos_x >= OUT_WIDTH) {
|
||||
pos_x = 0;
|
||||
pos_y++;
|
||||
}
|
||||
if (pos_y >= OUT_HEIGHT) {
|
||||
pos_y = 0;
|
||||
saveData(
|
||||
("output_img_" + std::to_string(cnt_flame) + ".bmp").c_str());
|
||||
cnt_flame++;
|
||||
}
|
||||
if (cnt_flame >= FLAMES) {
|
||||
is_finish = true;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
@ -177,23 +186,27 @@ SC_MODULE(TB_ISP) {
|
|||
|
||||
bool saveData(const char *name) {
|
||||
bool ret = true;
|
||||
// Transform isp image
|
||||
std::vector<uint8_t> bmp_image(3 * OUT_SIZE);
|
||||
for (int i = 0; i < OUT_SIZE; i++) {
|
||||
bmp_image[i + 0] = (process_image[i] & 0x00ff0000) >> 16;
|
||||
bmp_image[i + 1] = (process_image[i] & 0x0000ff00) >> 8;
|
||||
bmp_image[i + 2] = (process_image[i] & 0x000000ff) >> 0;
|
||||
|
||||
// Check Image Size
|
||||
if (process_image.size() > OUT_SIZE) {
|
||||
std::cout << "Process Image Over Size!!!\n"
|
||||
<< "Image Size:" << process_image.size() << "\n";
|
||||
return false;
|
||||
}
|
||||
|
||||
// Write BMP image
|
||||
std::ofstream bmp;
|
||||
bmp.open(std::string(output) + name);
|
||||
if (!bmp.is_open()) {
|
||||
std::cout << "Output File Open Failed!!!\n";
|
||||
bitmap_image bmp(OUT_WIDTH, OUT_HEIGHT);
|
||||
if (!bmp) {
|
||||
std::cout << "Output Image Open Failed!!!\n";
|
||||
return false;
|
||||
}
|
||||
ret = writeBMP(bmp, bmp_image, OUT_WIDTH, OUT_HEIGHT);
|
||||
bmp.close();
|
||||
for (int y = 0; y < OUT_HEIGHT; y++)
|
||||
for (int x = 0; x < OUT_WIDTH; x++)
|
||||
bmp.set_pixel(x, y,
|
||||
(process_image[y * OUT_WIDTH + x] & 0x00ff0000) >> 16,
|
||||
(process_image[y * OUT_WIDTH + x] & 0x0000ff00) >> 8,
|
||||
(process_image[y * OUT_WIDTH + x] & 0x000000ff) >> 0);
|
||||
bmp.save_image(std::string(OUTPUT_DIR) + name);
|
||||
return ret;
|
||||
}
|
||||
};
|
||||
|
@ -203,7 +216,7 @@ int sc_main(int argc, char *argv[]) {
|
|||
|
||||
// Open Image
|
||||
std::ifstream image;
|
||||
image.open(input, std::ios::in | std::ios::binary);
|
||||
image.open(INPUT_IMG, std::ios::in | std::ios::binary);
|
||||
// Check image whether is open
|
||||
if (!image.is_open()) {
|
||||
std::printf("Open Image Failed!!!\n");
|
||||
|
@ -214,13 +227,13 @@ int sc_main(int argc, char *argv[]) {
|
|||
|
||||
// Read and Transform Image
|
||||
std::vector<uint16_t> in_image(IN_SIZE);
|
||||
char *buf = new char[2 * IN_SIZE];
|
||||
image.read(buf, sizeof(buf));
|
||||
uint8_t *buf = new uint8_t[2 * IN_SIZE];
|
||||
image.read((char *)buf, 2 * IN_SIZE);
|
||||
uint32_t i = 0;
|
||||
for (int y = 0; y < IN_HEIGHT; y++) {
|
||||
for (int x = 0; x < IN_HEIGHT; x++) {
|
||||
in_image[y * IN_HEIGHT + x] =
|
||||
static_cast<uint16_t>(i) + (static_cast<uint16_t>(i + 1) << 8);
|
||||
for (int x = 0; x < IN_WIDTH; x++) {
|
||||
in_image[y * IN_WIDTH + x] =
|
||||
(uint16_t)buf[i] + ((uint16_t)buf[i + 1] << 8);
|
||||
i += 2;
|
||||
}
|
||||
}
|
||||
|
@ -281,50 +294,24 @@ int sc_main(int argc, char *argv[]) {
|
|||
sc_signal<uint32_t> white_gain[3];
|
||||
|
||||
// Construct the Verilated model, from inside Visp.h
|
||||
Visp isp("Visp");
|
||||
// isp.clk(clk);
|
||||
// isp.reset(rst);
|
||||
// // Connect input signal
|
||||
// isp.in_valid(in_valid);
|
||||
// isp.in_ready(in_ready);
|
||||
// for (int i = 0; i < 3; i++)
|
||||
// isp.in_data[i](in_data[i]);
|
||||
// // Connect output signal
|
||||
// isp.out_valid(out_valid);
|
||||
// isp.out_ready(out_ready);
|
||||
// isp.out_data(out_data);
|
||||
// // Connect ISP modules enable signal
|
||||
// isp.blender_enable(blender_enable);
|
||||
// // Connect ISP modules configuration signal
|
||||
// isp.gain_red(gain_red);
|
||||
// isp.gain_green(gain_green);
|
||||
// isp.gain_blue(gain_blue);
|
||||
|
||||
// ISP Old Version
|
||||
Visp_Pipeline isp("Visp");
|
||||
isp.clk(clk);
|
||||
isp.reset(rst);
|
||||
isp.in_en(in_valid);
|
||||
// Connect input signal
|
||||
isp.in_valid(in_valid);
|
||||
isp.in_ready(in_ready);
|
||||
for (int i = 0; i < 3; i++)
|
||||
isp.in_data[i](in_data[i]);
|
||||
sc_signal<bool> out_receive;
|
||||
isp.out_receive(out_receive);
|
||||
isp.out_en(out_valid);
|
||||
// Connect output signal
|
||||
isp.out_valid(out_valid);
|
||||
isp.out_ready(out_ready);
|
||||
isp.out_data(out_data);
|
||||
// Connect ISP modules enable signal
|
||||
isp.blender_enable(blender_enable);
|
||||
isp.gamma_enable(gamma_enable);
|
||||
isp.white_enable(white_enable);
|
||||
isp.saturation_enable(saturation_enable);
|
||||
// Connect ISP modules configuration signal
|
||||
isp.gain_red(gain_red);
|
||||
isp.gain_green(gain_green);
|
||||
isp.gain_blue(gain_blue);
|
||||
isp.flame_rate(flame_rate);
|
||||
isp.saturation_inc(saturation_inc);
|
||||
for (int i = 0; i < 256; i++)
|
||||
isp.gamma_table[i](gamma_table[i]);
|
||||
for (int i = 0; i < 3; i++)
|
||||
isp.white_gain[i](white_gain[i]);
|
||||
|
||||
// Construct testbench module
|
||||
TB_ISP tb_isp("tb_isp");
|
Loading…
Reference in New Issue