create a different width of input and outpud SyncFIFO
This commit is contained in:
parent
e4fffd21bb
commit
407dedd229
|
@ -0,0 +1,68 @@
|
|||
`timescale 1ns / 1ps
|
||||
|
||||
module DiffWidthSyncFIFO #(
|
||||
parameter reg [7:0] DATA_WIDTH = 8,
|
||||
parameter reg [7:0] DATA_DEPTH = 12,
|
||||
parameter reg [7:0] READ_DEPTH = 3,
|
||||
parameter reg [7:0] WRITE_DEPTH = 4
|
||||
) (
|
||||
input wire clk,
|
||||
input wire reset,
|
||||
|
||||
input wire read_ready,
|
||||
output reg read_en,
|
||||
output reg [DATA_WIDTH * READ_DEPTH - 1 : 0] read_data,
|
||||
|
||||
output reg write_ready,
|
||||
input wire write_en,
|
||||
input wire [DATA_WIDTH * WRITE_DEPTH - 1 : 0] write_data
|
||||
);
|
||||
reg [DATA_WIDTH - 1 : 0] data[DATA_DEPTH];
|
||||
wire [7:0] occupancy;
|
||||
reg [7:0] cnt_read, cnt_write;
|
||||
reg [7:0] wi, ri;
|
||||
|
||||
assign occupancy = (cnt_write >= cnt_read)
|
||||
? (cnt_write - cnt_read)
|
||||
: (cnt_write + DATA_DEPTH - cnt_read);
|
||||
|
||||
// write data to fifo
|
||||
always @(posedge clk or posedge reset) begin
|
||||
if (reset) begin
|
||||
write_ready <= 0;
|
||||
cnt_write <= 0;
|
||||
end else begin
|
||||
if (write_en) begin
|
||||
write_ready <= 0;
|
||||
for (wi = 0; wi < WRITE_DEPTH; wi = wi + 1) begin
|
||||
data[cnt_write] <= write_data[DATA_WIDTH*(wi+1)-1 : wi*DATA_WIDTH];
|
||||
|
||||
if (cnt_write < DATA_DEPTH - 1) cnt_write <= cnt_write + 1;
|
||||
else cnt_write <= 0;
|
||||
end
|
||||
end else begin
|
||||
write_ready <= 1;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
always @(posedge clk or posedge reset) begin
|
||||
if (reset) begin
|
||||
read_data <= 0;
|
||||
cnt_read <= 0;
|
||||
end else begin
|
||||
if (read_ready) begin
|
||||
read_en <= 1;
|
||||
for (ri = 0; ri < READ_DEPTH; ri = ri + 1) begin
|
||||
read_data[DATA_WIDTH*(ri+1)-1:ri*DATA_WIDTH] <= data[cnt_read];
|
||||
|
||||
if (cnt_read < DATA_DEPTH - 1) cnt_read <= cnt_read + 1;
|
||||
else cnt_read <= 0;
|
||||
end
|
||||
end else begin
|
||||
read_en <= 0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,65 @@
|
|||
`timescale 1ns / 1ps
|
||||
`include "DiffWidthSyncFIFO.v"
|
||||
`default_nettype none
|
||||
|
||||
module tb_DiffWidthSyncFIFO;
|
||||
localparam reg [7:0] DATA_WIDTH = 8;
|
||||
localparam reg [7:0] DATA_DEPTH = 12;
|
||||
localparam reg [7:0] READ_DEPTH = 3;
|
||||
localparam reg [7:0] WRITE_DEPTH = 4;
|
||||
reg clk;
|
||||
reg reset;
|
||||
reg write_en;
|
||||
reg [DATA_WIDTH * WRITE_DEPTH - 1 : 0] write_data;
|
||||
|
||||
wire read_en, write_ready, read_ready;
|
||||
wire [DATA_WIDTH * READ_DEPTH - 1 : 0] read_data;
|
||||
|
||||
|
||||
DiffWidthSyncFIFO #(
|
||||
.DATA_WIDTH (DATA_WIDTH),
|
||||
.DATA_DEPTH (DATA_DEPTH),
|
||||
.READ_DEPTH (READ_DEPTH),
|
||||
.WRITE_DEPTH(WRITE_DEPTH)
|
||||
) inst_fifo (
|
||||
.clk (clk),
|
||||
.reset(reset),
|
||||
|
||||
.read_ready(read_ready),
|
||||
.read_en(read_en),
|
||||
.read_data(read_data),
|
||||
|
||||
.write_ready(write_ready),
|
||||
.write_en(write_en),
|
||||
.write_data(write_data)
|
||||
);
|
||||
|
||||
localparam CLK_PERIOD = 10;
|
||||
always #(CLK_PERIOD / 2) clk = ~clk;
|
||||
|
||||
initial begin
|
||||
$dumpfile("tb_DiffWidthSyncFIFO.vcd");
|
||||
$dumpvars(0, tb_DiffWidthSyncFIFO);
|
||||
end
|
||||
|
||||
assign read_ready = read_en ? 0 : 1;
|
||||
|
||||
initial begin
|
||||
clk = 0;
|
||||
reset = 0;
|
||||
write_en = 0;
|
||||
write_data = 0;
|
||||
end
|
||||
|
||||
integer i;
|
||||
initial begin
|
||||
for (i = 0; i < 10; i = i + 1) begin
|
||||
|
||||
end
|
||||
|
||||
$finish(10 * CLK_PERIOD);
|
||||
end
|
||||
|
||||
|
||||
endmodule
|
||||
`default_nettype wire
|
|
@ -33,10 +33,11 @@ struct color_gain {
|
|||
double red;
|
||||
double green;
|
||||
double blue;
|
||||
} color_gain{1.1, 0.7, 1.3};
|
||||
} color_gain{1.1, 0.7, 1.3}, white_gain;
|
||||
|
||||
static const double gamma_value = 2.2;
|
||||
static const double saturation_inc = 0.5;
|
||||
static const double white_radio = 0.1;
|
||||
|
||||
using namespace sc_core;
|
||||
using namespace sc_dt;
|
||||
|
@ -143,7 +144,7 @@ int sc_main(int argc, char* argv[]) {
|
|||
std::ifstream in_image;
|
||||
std::ofstream out_image;
|
||||
in_image.open("./transform/test.bin", std::ios::in | std::ios::binary);
|
||||
out_image.open("./transform/out.bin", std::ios::out | std::ios::binary);
|
||||
// out_image.open("./transform/out.bin", std::ios::out | std::ios::binary);
|
||||
if (!in_image.is_open()) {
|
||||
std::cout << "Open image fail" << std::endl;
|
||||
exit(0);
|
||||
|
@ -336,6 +337,8 @@ int sc_main(int argc, char* argv[]) {
|
|||
new uint8_t[OUT_WIDTH * OUT_HEIGHT * 3]; // RGB24格式像素数据
|
||||
|
||||
// software algorthms analyze
|
||||
uint32_t red_total = 0, green_total = 0, blue_total = 0;
|
||||
uint8_t red_max = 0, green_max = 0, blue_max = 0;
|
||||
for (int32_t y = 0; y < OUT_HEIGHT; ++y) {
|
||||
for (int32_t x = 0; x < OUT_WIDTH; ++x) {
|
||||
int32_t index = (y * OUT_WIDTH + x) * 3;
|
||||
|
@ -349,7 +352,13 @@ int sc_main(int argc, char* argv[]) {
|
|||
// green = 255 * std::pow(green / 255.0, 1 / gamma_value);
|
||||
// blue = 255 * std::pow(blue / 255.0, 1 / gamma_value);
|
||||
|
||||
// Adjust white balance
|
||||
// Calculate white balance data
|
||||
red_max = std::max(red_max, red);
|
||||
green_max = std::max(green_max, green);
|
||||
blue_max = std::max(blue_max, blue);
|
||||
red_total += red;
|
||||
green_total += green;
|
||||
blue_total += blue;
|
||||
|
||||
// Adjust vibrance
|
||||
// uint8_t max = std::max({red, green, blue});
|
||||
|
@ -391,32 +400,47 @@ int sc_main(int argc, char* argv[]) {
|
|||
}
|
||||
}
|
||||
|
||||
// Save output image
|
||||
std::cout << "Ready to save raw RGB image" << std::endl;
|
||||
// for (int y = 0; y < OUT_HEIGHT; y++)
|
||||
// for(int x = 0; x < OUT_WIDTH; x++)
|
||||
// out_image.write((const char *)&tb_isp.out[y * OUT_WIDTH + x],
|
||||
// sizeof(tb_isp.out[0]));
|
||||
// out_image.close();
|
||||
|
||||
// save to image
|
||||
// Adjust White Balance : Grey World Color Correction
|
||||
double K = static_cast<double>(red_total + green_total + blue_total) / (3 * OUT_SIZE);
|
||||
white_gain.red = static_cast<double>(K * OUT_SIZE) / red_total;
|
||||
white_gain.green = static_cast<double>(K * OUT_SIZE) / green_total;
|
||||
white_gain.blue = static_cast<double>(K * OUT_SIZE) / blue_total;
|
||||
printf("Gain: red = %f, green = %f, blue = %f", white_gain.red,
|
||||
white_gain.green, white_gain.blue);
|
||||
for (int32_t y = 0; y < OUT_HEIGHT; ++y) {
|
||||
for (int32_t x = 0; x < OUT_WIDTH; ++x) {
|
||||
int32_t index = (y * OUT_WIDTH + x) * 3;
|
||||
|
||||
uint8_t red = data[index + 0];
|
||||
uint8_t green = data[index + 1];
|
||||
uint8_t blue = data[index + 2];
|
||||
|
||||
out_image.write((const char*)&red, sizeof(red));
|
||||
out_image.write((const char*)&green, sizeof(green));
|
||||
out_image.write((const char*)&blue, sizeof(blue));
|
||||
|
||||
printf("x=%4d, y=%4d, red=0x%02x, green=0x%02x, blue=0x%02x\n", x,
|
||||
y, red, green, blue);
|
||||
data[index + 0] =
|
||||
static_cast<uint8_t>(white_gain.red * data[index + 0]);
|
||||
data[index + 1] =
|
||||
static_cast<uint8_t>(white_gain.green * data[index + 1]);
|
||||
data[index + 2] =
|
||||
static_cast<uint8_t>(white_gain.blue * data[index + 2]);
|
||||
}
|
||||
}
|
||||
|
||||
// save to bin
|
||||
std::cout << "Ready to save raw RGB image" << std::endl;
|
||||
// for (int32_t y = 0; y < OUT_HEIGHT; ++y) {
|
||||
// for (int32_t x = 0; x < OUT_WIDTH; ++x) {
|
||||
// int32_t index = (y * OUT_WIDTH + x) * 3;
|
||||
|
||||
// uint8_t red = data[index + 0];
|
||||
// uint8_t green = data[index + 1];
|
||||
// uint8_t blue = data[index + 2];
|
||||
|
||||
// out_image.write((const char*)&red, sizeof(red));
|
||||
// out_image.write((const char*)&green, sizeof(green));
|
||||
// out_image.write((const char*)&blue, sizeof(blue));
|
||||
|
||||
// printf("x=%4d, y=%4d, red=0x%02x, green=0x%02x, blue=0x%02x\n",
|
||||
// x,
|
||||
// y, red, green, blue);
|
||||
// }
|
||||
// }
|
||||
|
||||
// save to bmp
|
||||
write_bmp("test.bmp", data, OUT_WIDTH, OUT_HEIGHT);
|
||||
delete[] data;
|
||||
|
||||
|
|
Loading…
Reference in New Issue