use cmake to replace makefiel

This commit is contained in:
SikongJueluo 2024-10-03 15:13:24 +08:00
parent 7e12105a3d
commit 35e6ab1e85
No known key found for this signature in database
24 changed files with 1887 additions and 882 deletions

64
CMakeLists.txt Normal file
View File

@ -0,0 +1,64 @@
cmake_minimum_required(VERSION 3.29.6)
cmake_policy(SET CMP0074 NEW)
project(ISP CXX)
# Add Macro to get all subdir
MACRO(SUBDIRLIST result curdir)
FILE(GLOB children RELATIVE ${curdir} ${curdir}/*)
SET(dirlist "")
FOREACH(child ${children})
IF(IS_DIRECTORY ${curdir}/${child})
LIST(APPEND dirlist ${curdir}/${child})
ENDIF()
ENDFOREACH()
SET(${result} ${dirlist})
ENDMACRO()
# Set C++ Standard
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED true)
# Find Verilator
find_package(verilator HINTS $ENV{VERILATOR_ROOT} ${VERILATOR_ROOT})
if(NOT verilator_FOUND)
message(
FATAL_ERROR
"Verilator was not found. Either install it, or set the VERILATOR_ROOT environment variable"
)
endif()
# SystemC dependencies
set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
# Find SystemC using SystemC's CMake integration
find_package(SystemCLanguage QUIET)
# Create software image process library
file(GLOB_RECURSE IMG_SRC ${PROJECT_SOURCE_DIR}/src/img_process/*.cpp)
add_library(img_process STATIC ${IMG_SRC})
# Create a new executable target
file(GLOB_RECURSE VISP_SRC ${PROJECT_SOURCE_DIR}/src/*.cpp)
add_executable(Visp ${VISP_SRC})
target_compile_definitions(Visp
PRIVATE INPUT_IMG="${PROJECT_SOURCE_DIR}/src/transform/test.bin"
PRIVATE OUTPUT_DIR="${PROJECT_SOURCE_DIR}/logs/"
)
target_include_directories(Visp PRIVATE ${PROJECT_SOURCE_DIR}/src/img_process)
target_link_libraries(Visp PRIVATE img_process)
# target_compile_features(Visp PUBLIC cxx_std_17)
# set_property(TARGET Visp PROPERTY CXX_STANDARD ${SystemC_CXX_STANDARD})
# Add the Verilated circuit to the target
SUBDIRLIST(RTL_SUBDIR ${PROJECT_SOURCE_DIR}/rtl)
verilate(Visp SYSTEMC COVERAGE TRACE
INCLUDE_DIRS ${RTL_SUBDIR}
VERILATOR_ARGS +librescan +libext+.v+.sv+.vh+.svh -y . -x-assign fast
SOURCES ${PROJECT_SOURCE_DIR}/rtl/isp.sv
TOP_MODULE isp
)
# SystemC Link
verilator_link_systemc(Visp)

View File

@ -8,11 +8,13 @@
svls
# C/C++
gnumake
xmake
gnumake
cmake
ninja
gcc
neocmakelsp
clang-tools
bear
];
# Enable languages support

134
Makefile
View File

@ -1,134 +0,0 @@
######################################################################
#
# DESCRIPTION: Verilator Example: Small Makefile
#
# This calls the object directory makefile. That allows the objects to
# be placed in the "current directory" which simplifies the Makefile.
#
# This file ONLY is placed under the Creative Commons Public Domain, for
# any use, without warranty, 2020 by Wilson Snyder.
# SPDX-License-Identifier: CC0-1.0
#
######################################################################
# Check for sanity to avoid later confusion
ifneq ($(words $(CURDIR)),1)
$(error Unsupported: GNU Make cannot build in directories containing spaces, build elsewhere: '$(CURDIR)')
endif
######################################################################
# Set up variables
# If $VERILATOR_ROOT isn't in the environment, we assume it is part of a
# package install, and verilator is in your path. Otherwise find the
# binary relative to $VERILATOR_ROOT (such as when inside the git sources).
ifeq ($(VERILATOR_ROOT),)
VERILATOR = verilator
VERILATOR_COVERAGE = verilator_coverage
else
export VERILATOR_ROOT
VERILATOR = $(VERILATOR_ROOT)/bin/verilator
VERILATOR_COVERAGE = $(VERILATOR_ROOT)/bin/verilator_coverage
endif
VERILATOR_FLAGS =
# Generate SystemC in executable form
VERILATOR_FLAGS += -sc --exe
# Generate makefile dependencies (not shown as complicates the Makefile)
#VERILATOR_FLAGS += -MMD
# Optimize
VERILATOR_FLAGS += -x-assign fast
# Warn abount lint issues; may not want this on less solid designs
VERILATOR_FLAGS += -Wall
# Make waveforms
VERILATOR_FLAGS += --trace
# Check SystemVerilog assertions
VERILATOR_FLAGS += --assert
# Enable multithreading
VERILATOR_FLAGS += --threads 14
# Generate coverage analysis
# VERILATOR_FLAGS += --coverage
# Run Verilator in debug mode
#VERILATOR_FLAGS += --debug
# Add this trace to get a backtrace in gdb
#VERILATOR_FLAGS += --gdbbt
# Ignore Some Warnings
VERILATOR_FLAGS += -Wno-WIDTHEXPAND -Wno-UNUSEDSIGNAL -Wno-UNUSEDPARAM
# Specify top module
TOP_MODULE = isp
VERILATOR_FLAGS += --top-module $(TOP_MODULE)
# Input files for Verilator
# Verilog/SystemVerilog files
SOURCES := $(wildcard ./rtl/isp.sv ./rtl/Windows.sv ./rtl/Demosaic/*.sv ./rtl/Crop/*.sv ./rtl/Color/*.sv)
# C/C++ files
SOURCES += $(wildcard ./src/*.cpp ./src/transform/*.cpp)
# Exclude files
EXCLUDES := $(wildcard )
VERILATOR_INPUT := $(filter-out $(EXCLUDES), $(SOURCES))
# Check if SC exists via a verilator call (empty if not)
SYSTEMC_EXISTS := $(shell $(VERILATOR) --get-supported SYSTEMC)
######################################################################
ifneq ($(SYSTEMC_EXISTS),)
default: build run
else
default: nosc
endif
lint:
@echo "-- Verilator lint check ----"
$(VERILATOR) -sc --lint-only $(VERILATOR_INPUT)
build:
@echo
@echo "-- VERILATE ----------------"
$(VERILATOR) $(VERILATOR_FLAGS) $(VERILATOR_INPUT)
@echo
@echo "-- COMPILE -----------------"
# To compile, we can either
# 1. Pass --build to Verilator by editing VERILATOR_FLAGS above.
# 2. Or, run the make rules Verilator does:
# $(MAKE) -j -C obj_dir -f Vtop.mk
# 3. Or, call a submakefile where we can override the rules ourselves:
$(MAKE) -j -C obj_dir -f V$(TOP_MODULE).mk
run:
@echo
@echo "-- RUN ---------------------"
obj_dir/V$(TOP_MODULE)
# @echo
# @echo "-- COVERAGE ----------------"
# @rm -rf logs/annotated
# $(VERILATOR_COVERAGE) --annotate logs/annotated logs/coverage.dat
@echo "-- FINISH ------------------"
trace:
@rm -rf logs
@mkdir -p logs
obj_dir/V$(TOP_MODULE) +trace
@echo
@echo "-- DONE --------------------"
@echo "To see waveforms, open vlt_dump.vcd in a waveform viewer"
@echo
######################################################################
# Other targets
nosc:
@echo
@echo "%Skip: SYSTEMC_INCLUDE not in environment"
@echo "(If you have SystemC see the README, and rebuild Verilator)"
@echo
show-config:
$(VERILATOR) -V
maintainer-copy::
clean mostlyclean distclean maintainer-clean::
-rm -rf obj_dir logs *.log *.dmp *.vpd coverage.dat core

View File

@ -1,5 +1,4 @@
`timescale 1ns/1ps
// 三通道图像合成一个RGB图像
module ColorBlender #(
parameter reg [4:0] IN_DEPTH = 12, // 输入图像的色深
@ -8,20 +7,16 @@ module ColorBlender #(
input wire clk,
input wire reset,
input wire [16 - 1:0] in_data [3],
output reg [OUT_DEPTH - 1:0] out_data [3],
input wire in_valid,
output wire out_valid,
input wire in_ready,
input wire in_en,
input wire [15:0] in_data[3], // 0:R 1:G 2:B
output wire out_ready,
output wire out_receive,
input wire in_hsync,
input wire in_fsync,
output wire out_hsync,
output wire out_fsync,
// 输出相关
input wire in_ready,
input wire in_receive,
output reg out_en,
output reg [OUT_DEPTH - 1:0] out_data[3],
// 颜色校正
input wire [15:0] gain_red,
@ -29,71 +24,86 @@ module ColorBlender #(
input wire [15:0] gain_blue,
input wire enable
);
localparam reg [2:0] READ_DATA = 0;
localparam reg [2:0] CALC_DATA = 1;
localparam reg [2:0] SATI_DATA = 2;
localparam reg [2:0] SEND_DATA = 3;
localparam PIPELINE = 4;
reg [2:0] state, nextState;
reg [32 - 1:0] data_cal[3]; // 用于保存运算结果,防止溢出
reg [PIPELINE-1:0] pipeline_hsync, pipeline_fsync, pipeline_valid;
wire pipeline_flag;
assign pipeline_flag = (pipeline_valid[PIPELINE-1] == 0) | (in_ready);
//out_ready :只要本模块可以接收数据就一直拉高
assign out_ready = pipeline_flag;
//out_valid :只要本模块有数据要发送就一直拉高
assign out_valid = pipeline_valid[PIPELINE-1];
assign out_hsync = pipeline_hsync[PIPELINE-1];
assign out_fsync = pipeline_fsync[PIPELINE-1];
reg [32 - 1:0] data_cal0[3];
reg [32 - 1:0] data_cal1[3];
reg [32 - 1:0] data_cal2[3];
integer i;
always @(posedge clk) begin
if (reset) begin
pipeline_valid <= 0;
pipeline_hsync <= 0;
pipeline_fsync <= 0;
for(i=0;i<3;i=i+1) data_cal0[i] <= 0;
for(i=0;i<3;i=i+1) data_cal1[i] <= 0;
for(i=0;i<3;i=i+1) data_cal2[i] <= 0;
for(i=0;i<3;i=i+1) out_data[i] <= 0;
end else if(pipeline_flag) begin
/************* 流水 ************/
pipeline_valid <= {pipeline_valid[PIPELINE-2:0], in_valid};
pipeline_hsync <= {pipeline_hsync[PIPELINE-2:0], in_hsync};
pipeline_fsync <= {pipeline_fsync[PIPELINE-2:0], in_fsync};
/************* 1:计算1 ************/
if(in_valid) begin
data_cal0[0] <= ({16'b0, in_data[0]}) << (8 - (IN_DEPTH - OUT_DEPTH));
data_cal0[1] <= ({16'b0, in_data[1]}) << (8 - (IN_DEPTH - OUT_DEPTH));
data_cal0[2] <= ({16'b0, in_data[2]}) << (8 - (IN_DEPTH - OUT_DEPTH));
end
/************* 2:计算2 ************/
if(pipeline_valid[0]) begin
if(enable) begin
data_cal1[0] <= (data_cal0[0] * {16'b0, gain_red}) >> 16;
data_cal1[1] <= (data_cal0[1] * {16'b0, gain_green}) >> 16;
data_cal1[2] <= (data_cal0[2] * {16'b0, gain_blue}) >> 16;
state <= READ_DATA;
end else begin
data_cal1[0] <= data_cal0[0] >> 8;
data_cal1[1] <= data_cal0[1] >> 8;
data_cal1[2] <= data_cal0[2] >> 8;
state <= nextState;
end
end
/************* 3:计算3 ************/
if(pipeline_valid[1]) begin
data_cal2[0] <= (data_cal1[0][31 : OUT_DEPTH] != 0) ? {32{1'b1}} : data_cal1[0];
data_cal2[1] <= (data_cal1[1][31 : OUT_DEPTH] != 0) ? {32{1'b1}} : data_cal1[1];
data_cal2[2] <= (data_cal1[2][31 : OUT_DEPTH] != 0) ? {32{1'b1}} : data_cal1[2];
always @(*) begin
case (state)
READ_DATA: nextState = (in_en) ? CALC_DATA : READ_DATA;
CALC_DATA: nextState = SATI_DATA;
SATI_DATA: nextState = SEND_DATA;
SEND_DATA: nextState = (in_receive) ? READ_DATA : SEND_DATA;
default: nextState = READ_DATA;
endcase
end
/************* 4:发送结果 ************/
if(pipeline_valid[2]) begin
out_data[0] <= data_cal2[0][OUT_DEPTH-1:0];
out_data[1] <= data_cal2[1][OUT_DEPTH-1:0];
out_data[2] <= data_cal2[2][OUT_DEPTH-1:0];
assign out_ready = (!in_en && state == READ_DATA && !reset) ? 1 : 0;
assign out_receive = (in_en && state == READ_DATA && !reset) ? 1 : 0;
always @(posedge clk) begin
if (reset) begin
// 初始化
data_cal[0] <= 0;
data_cal[1] <= 0;
data_cal[2] <= 0;
out_data[0] <= 0;
out_data[1] <= 0;
out_data[2] <= 0;
out_en <= 0;
end else begin
case (state)
READ_DATA: begin
if (in_en) begin
data_cal[0] <= ({16'b0, in_data[0]}) << (8 - (IN_DEPTH - OUT_DEPTH));
data_cal[1] <= ({16'b0, in_data[1]}) << (8 - (IN_DEPTH - OUT_DEPTH));
data_cal[2] <= ({16'b0, in_data[2]}) << (8 - (IN_DEPTH - OUT_DEPTH));
end
end
CALC_DATA: begin
if (enable) begin
data_cal[0] <= (data_cal[0] * {16'b0, gain_red}) >> 16;
data_cal[1] <= (data_cal[1] * {16'b0, gain_green}) >> 16;
data_cal[2] <= (data_cal[2] * {16'b0, gain_blue}) >> 16;
end else begin
data_cal[0] <= data_cal[0] >> 8;
data_cal[1] <= data_cal[1] >> 8;
data_cal[2] <= data_cal[2] >> 8;
end
end
SATI_DATA: begin
data_cal[0] <= |data_cal[0][31 : OUT_DEPTH] ? {32{1'b1}} : data_cal[0];
data_cal[1] <= |data_cal[1][31 : OUT_DEPTH] ? {32{1'b1}} : data_cal[1];
data_cal[2] <= |data_cal[2][31 : OUT_DEPTH] ? {32{1'b1}} : data_cal[2];
end
SEND_DATA: begin
if (in_ready && !in_receive) begin
out_en <= 1;
out_data[0] <= data_cal[0][OUT_DEPTH-1:0];
out_data[1] <= data_cal[1][OUT_DEPTH-1:0];
out_data[2] <= data_cal[2][OUT_DEPTH-1:0];
end else out_en <= 0;
end
default: ;
endcase
end
end
endmodule

View File

@ -0,0 +1,99 @@
`timescale 1ns / 1ps
// 三通道图像合成一个RGB图像
module ColorBlender #(
parameter reg [4:0] IN_DEPTH = 12, // 输入图像的色深
parameter reg [4:0] OUT_DEPTH = 8 // 输出图像的色深
) (
input wire clk,
input wire reset,
input wire [16 - 1:0] in_data [3],
output reg [OUT_DEPTH - 1:0] out_data [3],
input wire in_valid,
output wire out_valid,
input wire in_ready,
output wire out_ready,
input wire in_hsync,
input wire in_fsync,
output wire out_hsync,
output wire out_fsync,
// 颜色校正
input wire [15:0] gain_red,
input wire [15:0] gain_green,
input wire [15:0] gain_blue,
input wire enable
);
localparam PIPELINE = 4;
reg [PIPELINE-1:0] pipeline_hsync, pipeline_fsync, pipeline_valid;
wire pipeline_flag;
assign pipeline_flag = (pipeline_valid[PIPELINE-1] == 0) | (in_ready);
//out_ready :只要本模块可以接收数据就一直拉高
assign out_ready = pipeline_flag;
//out_valid :只要本模块有数据要发送就一直拉高
assign out_valid = pipeline_valid[PIPELINE-1];
assign out_hsync = pipeline_hsync[PIPELINE-1];
assign out_fsync = pipeline_fsync[PIPELINE-1];
reg [32 - 1:0] data_cal0[3];
reg [32 - 1:0] data_cal1[3];
reg [32 - 1:0] data_cal2[3];
integer i;
always @(posedge clk) begin
if(reset) begin
pipeline_valid <= 0;
pipeline_hsync <= 0;
pipeline_fsync <= 0;
for(i=0;i<3;i=i+1) data_cal0[i] <= 0;
for(i=0;i<3;i=i+1) data_cal1[i] <= 0;
for(i=0;i<3;i=i+1) data_cal2[i] <= 0;
for(i=0;i<3;i=i+1) out_data[i] <= 0;
end else if(pipeline_flag) begin
/************* 流水 ************/
pipeline_valid <= {pipeline_valid[PIPELINE-2:0], in_valid};
pipeline_hsync <= {pipeline_hsync[PIPELINE-2:0], in_hsync};
pipeline_fsync <= {pipeline_fsync[PIPELINE-2:0], in_fsync};
/************* 1:计算1 ************/
if(in_valid) begin
data_cal0[0] <= ({16'b0, in_data[0]}) << (8 - (IN_DEPTH - OUT_DEPTH));
data_cal0[1] <= ({16'b0, in_data[1]}) << (8 - (IN_DEPTH - OUT_DEPTH));
data_cal0[2] <= ({16'b0, in_data[2]}) << (8 - (IN_DEPTH - OUT_DEPTH));
end
/************* 2:计算2 ************/
if(pipeline_valid[0]) begin
if(enable) begin
data_cal1[0] <= (data_cal0[0] * {16'b0, gain_red}) >> 16;
data_cal1[1] <= (data_cal0[1] * {16'b0, gain_green}) >> 16;
data_cal1[2] <= (data_cal0[2] * {16'b0, gain_blue}) >> 16;
end else begin
data_cal1[0] <= data_cal0[0] >> 8;
data_cal1[1] <= data_cal0[1] >> 8;
data_cal1[2] <= data_cal0[2] >> 8;
end
end
/************* 3:计算3 ************/
if(pipeline_valid[1]) begin
data_cal2[0] <= (data_cal1[0][31 : OUT_DEPTH] != 0) ? {32{1'b1}} : data_cal1[0];
data_cal2[1] <= (data_cal1[1][31 : OUT_DEPTH] != 0) ? {32{1'b1}} : data_cal1[1];
data_cal2[2] <= (data_cal1[2][31 : OUT_DEPTH] != 0) ? {32{1'b1}} : data_cal1[2];
end
/************* 4:发送结果 ************/
if(pipeline_valid[2]) begin
out_data[0] <= data_cal2[0][OUT_DEPTH-1:0];
out_data[1] <= data_cal2[1][OUT_DEPTH-1:0];
out_data[2] <= data_cal2[2][OUT_DEPTH-1:0];
end
end
end
endmodule

View File

@ -1,106 +1,104 @@
`timescale 1ns/1ps
module Crop #(
parameter IN_WIDTH = 512,
parameter IN_HEIGHT = 512,
parameter OFFSET_X = 120,
parameter OFFSET_Y = 256,
// parameter TRANSLAYT_X = 120,
// parameter TRANSLAYT_Y = 120,
parameter OUT_WIDTH = 512,
parameter OUT_HEIGHT = 512,
parameter BLANK_COLOR = 6'h000000,
parameter COLOR_DEPTH = 16
parameter reg [15:0] IN_WIDTH = 1934,
parameter reg [15:0] IN_HEIGHT = 1086,
parameter reg [15:0] OFFSET_X = 7,
parameter reg [15:0] OFFSET_Y = 3,
parameter reg [15:0] OUT_WIDTH = 640,
parameter reg [15:0] OUT_HEIGHT = 480,
parameter reg [4:0] COLOR_DEPTH = 8
) (
input wire clk,
input wire reset,
input wire in_en,
output wire out_ready,
output wire out_receive,
input wire [COLOR_DEPTH - 1:0] in_data[3],
output reg [COLOR_DEPTH - 1:0] out_data[3],
input wire in_valid,
output reg out_valid,
input wire in_ready,
output wire out_ready,
input wire in_hsync,
input wire in_fsync,
output reg out_hsync,
output reg out_fsync
input wire in_receive,
output reg out_en,
output reg [COLOR_DEPTH - 1:0] out_data[3]
);
reg [1:0] state, nextState;
localparam reg [1:0] READ_DATA = 0;
localparam reg [1:0] HANDLE_DATA = 1;
localparam reg [1:0] SEND_DATA = 2;
localparam PIPILINE = 3;
reg [15:0] cnt_x, cnt_y;
reg [COLOR_DEPTH - 1:0] data[3];
wire is_valid;
reg [PIPILINE-1:0] pipeline_valid;
wire pipeline_running;
assign pipeline_running = in_ready | ~pipeline_valid[PIPILINE-1];
// 状态切换
always @(posedge clk) begin
if (reset) state <= READ_DATA;
else state <= nextState;
end
reg [31:0] cnt_x, cnt_y, temp_x, temp_y;
reg force_dis, force_en;
reg [COLOR_DEPTH-1:0] data_cache0[3];
reg [COLOR_DEPTH-1:0] data_cache1[3];
// 下一状态更新
always @(*) begin
case (state)
READ_DATA: nextState = in_en ? HANDLE_DATA : READ_DATA;
HANDLE_DATA: nextState = SEND_DATA;
SEND_DATA: nextState = (is_valid && !in_receive) ? SEND_DATA : READ_DATA;
default: nextState = READ_DATA;
endcase
end
//out_ready :只要本模块可以接收数据就一直拉高
assign out_ready = pipeline_running;
//out_valid :只要本模块可以发出数据就一直拉高
assign out_valid = (pipeline_valid[PIPILINE-1] & ~force_dis) | force_en;
assign out_ready = (!in_en && state == READ_DATA && !reset) ? 1 : 0;
assign out_receive = (in_en && state == READ_DATA && !reset) ? 1 : 0;
assign is_valid = ((OFFSET_Y <= cnt_y && cnt_y <= (OFFSET_Y + OUT_HEIGHT - 1)) &&
(OFFSET_X <= cnt_x && cnt_x <= (OFFSET_X + OUT_WIDTH))) ? 1 : 0;
//分别表示当前像素: 显示;被裁掉;空。
reg [1:0] flag_crop;
localparam CROP_ERROR = 2'b00, CROP_KEEP = 2'b01, CROP_GIVE_UP = 2'b10, CROP_BLANK = 2'b11;
integer i;
always @(posedge clk) begin
if (reset) begin
pipeline_valid <= 0;
cnt_x <= 0;
cnt_y <= 0;
for (i = 0; i < 3; i++) data_cache0[i] <= 0;
for (i = 0; i < 3; i++) data_cache1[i] <= 0;
for (i = 0; i < 3; i++) out_data[i] <= 0;
flag_crop <= 0;
force_dis <= 0;
force_en <= 0;
out_hsync <= 0;
out_fsync <= 0;
temp_x <= 0;
temp_y <= 0;
end else if (pipeline_running) begin
data[0] <= 0;
data[1] <= 0;
data[2] <= 0;
pipeline_valid <= {pipeline_valid[PIPILINE-2:0], in_valid};
if (in_valid) begin //when 00
for (i = 0; i < 3; i++) data_cache0[i] <= in_data[i];
cnt_x <= (in_hsync) ? (0) : (cnt_x + 1);
cnt_y <= (in_hsync) ? ((in_fsync) ? (0) : (cnt_y + 1)) : (cnt_y);
out_en <= 0;
out_data[0] <= 0;
out_data[1] <= 0;
out_data[2] <= 0;
end else begin
case (state)
READ_DATA: begin
if (in_en) begin
data[0] <= in_data[0];
data[1] <= in_data[1];
data[2] <= in_data[2];
end
end
if (pipeline_valid[0]) begin //when 00
for (i = 0; i < 3; i++) data_cache1[i] <= data_cache0[i];
temp_x <= cnt_x;
temp_y <= cnt_y;
if (cnt_x < OFFSET_X || cnt_y < OFFSET_Y) flag_crop <= CROP_GIVE_UP;
else if (cnt_x < OFFSET_X + OUT_WIDTH && cnt_y < OFFSET_Y + OUT_HEIGHT) begin
if (cnt_x < IN_WIDTH && cnt_y < IN_HEIGHT) flag_crop <= CROP_KEEP;
else flag_crop <= CROP_BLANK;
end else flag_crop <= CROP_ERROR;
HANDLE_DATA: begin
if (cnt_x >= IN_WIDTH - 1) begin
cnt_x <= 0;
cnt_y <= cnt_y + 1;
end else begin
cnt_x <= cnt_x + 1;
end
end
if (pipeline_valid[1]) begin
for (i = 0; i < 3; i++) out_data[i] <= data_cache1[i];
out_hsync <= (temp_x == OFFSET_X) && (temp_y >= OFFSET_Y);
out_fsync <= (temp_x == OFFSET_X) && (temp_y == OFFSET_Y);
case (flag_crop)
CROP_ERROR: {force_dis, force_en} <= {1'b1, 1'b0};
CROP_KEEP: {force_dis, force_en} <= {1'b0, 1'b0};
CROP_GIVE_UP: {force_dis, force_en} <= {1'b1, 1'b0};
CROP_BLANK:
{force_dis, force_en} <= {1'b0, 1'b0}; //应该是01, 但我还没写BLANK逻辑
SEND_DATA: begin
if (cnt_y >= IN_HEIGHT) begin
cnt_y <= 0;
end
if (in_ready && !in_receive && is_valid) begin
out_en <= 1;
out_data[0] <= data[0];
out_data[1] <= data[1];
out_data[2] <= data[2];
end else out_en <= 0;
end
default: ;
endcase
end
end
end
endmodule

106
rtl/Crop/Crop_Pipeline.sv Normal file
View File

@ -0,0 +1,106 @@
`timescale 1ns / 1ps
module Crop #(
parameter IN_WIDTH = 512,
parameter IN_HEIGHT = 512,
parameter OFFSET_X = 120,
parameter OFFSET_Y = 256,
// parameter TRANSLAYT_X = 120,
// parameter TRANSLAYT_Y = 120,
parameter OUT_WIDTH = 512,
parameter OUT_HEIGHT = 512,
parameter BLANK_COLOR = 6'h000000,
parameter COLOR_DEPTH = 16
) (
input wire clk,
input wire reset,
input wire [COLOR_DEPTH - 1:0] in_data [3],
output reg [COLOR_DEPTH - 1:0] out_data[3],
input wire in_valid,
output reg out_valid,
input wire in_ready,
output wire out_ready,
input wire in_hsync,
input wire in_fsync,
output reg out_hsync,
output reg out_fsync
);
localparam PIPILINE = 3;
reg [PIPILINE-1:0] pipeline_valid;
wire pipeline_running;
assign pipeline_running = in_ready | ~pipeline_valid[PIPILINE-1];
reg [31:0] cnt_x, cnt_y, temp_x, temp_y;
reg force_dis, force_en;
reg [COLOR_DEPTH-1:0] data_cache0[3];
reg [COLOR_DEPTH-1:0] data_cache1[3];
//out_ready :只要本模块可以接收数据就一直拉高
assign out_ready = pipeline_running;
//out_valid :只要本模块可以发出数据就一直拉高
assign out_valid = (pipeline_valid[PIPILINE-1] & ~force_dis) | force_en;
//分别表示当前像素: 显示;被裁掉;空。
reg [1:0] flag_crop;
localparam CROP_ERROR = 2'b00, CROP_KEEP = 2'b01, CROP_GIVE_UP = 2'b10, CROP_BLANK = 2'b11;
integer i;
always @(posedge clk) begin
if (reset) begin
pipeline_valid <= 0;
cnt_x <= 0;
cnt_y <= 0;
for (i = 0; i < 3; i++) data_cache0[i] <= 0;
for (i = 0; i < 3; i++) data_cache1[i] <= 0;
for (i = 0; i < 3; i++) out_data[i] <= 0;
flag_crop <= 0;
force_dis <= 0;
force_en <= 0;
out_hsync <= 0;
out_fsync <= 0;
temp_x <= 0;
temp_y <= 0;
end else if (pipeline_running) begin
pipeline_valid <= {pipeline_valid[PIPILINE-2:0], in_valid};
if (in_valid) begin //when 00
for (i = 0; i < 3; i++) data_cache0[i] <= in_data[i];
cnt_x <= (in_hsync) ? (0) : (cnt_x + 1);
cnt_y <= (in_hsync) ? ((in_fsync) ? (0) : (cnt_y + 1)) : (cnt_y);
end
if (pipeline_valid[0]) begin //when 00
for (i = 0; i < 3; i++) data_cache1[i] <= data_cache0[i];
temp_x <= cnt_x;
temp_y <= cnt_y;
if (cnt_x < OFFSET_X || cnt_y < OFFSET_Y) flag_crop <= CROP_GIVE_UP;
else if (cnt_x < OFFSET_X + OUT_WIDTH && cnt_y < OFFSET_Y + OUT_HEIGHT) begin
if (cnt_x < IN_WIDTH && cnt_y < IN_HEIGHT) flag_crop <= CROP_KEEP;
else flag_crop <= CROP_BLANK;
end else flag_crop <= CROP_ERROR;
end
if (pipeline_valid[1]) begin
for (i = 0; i < 3; i++) out_data[i] <= data_cache1[i];
out_hsync <= (temp_x == OFFSET_X) && (temp_y >= OFFSET_Y);
out_fsync <= (temp_x == OFFSET_X) && (temp_y == OFFSET_Y);
case (flag_crop)
CROP_ERROR: {force_dis, force_en} <= {1'b1, 1'b0};
CROP_KEEP: {force_dis, force_en} <= {1'b0, 1'b0};
CROP_GIVE_UP: {force_dis, force_en} <= {1'b1, 1'b0};
CROP_BLANK:
{force_dis, force_en} <= {1'b0, 1'b0}; //应该是01, 但我还没写BLANK逻辑
endcase
end
end
end
endmodule

187
rtl/Demosaic/Demosaic2.sv Normal file
View File

@ -0,0 +1,187 @@
`timescale 1ns/1ps
module Demosaic2 #(
parameter reg [15:0] IM_WIDTH = 512, // 图像宽度
parameter reg [15:0] IM_HEIGHT = 256, // 图像高度
parameter reg [ 1:0] RAW_TYPE = 3, // 0:grbg 1:rggb 2:bggr 3:gbrg
parameter reg [ 4:0] DATA_SIZE = 16
) (
// 基本信号
input wire clk,
input wire reset,
// 数据输入信号
input wire in_en,
input wire [DATA_SIZE - 1:0] in_data [3], // 数据输入线0、1、2分别表示第一、二、三行
output wire out_ready, // 数据请求线,高电平:请求三个数据,直到读取完才拉低
output wire out_receive,
// en: 输出数据有效信号,高电平有效
input wire in_ready,
input wire in_receive,
output reg out_en,
output reg [DATA_SIZE - 1:0] out_r,
output reg [DATA_SIZE - 1:0] out_g,
output reg [DATA_SIZE - 1:0] out_b
);
// 常量,包括状态机
// localparam IM_SIZE = IM_HEIGHT * IM_WIDTH;
localparam reg [2:0] READ_DATA = 0;
localparam reg [2:0] COLOR_GEN = 1;
localparam reg [2:0] SEND_DATA = 2;
localparam reg [2:0] SLIDE_WINDOW = 3;
// 寄存器
reg [2:0] state, nextState;
reg [15:0] data_cache[9]; // 缓存颜色数据行列3x3
reg [15:0] pos_x, pos_y; // 滑动窗口左上角位置
reg [2:0] cnt_data; // 记录输入数据数量最大值256
reg [1:0] raw_type;
reg [15:0] red, blue, green;
// 三段状态机实现,窗口滑动,颜色计算
// 状态切换
always @(posedge clk) begin
if (reset) state <= READ_DATA;
else state <= nextState;
end
// 下一状态更新
always @(*) begin
case (state)
// 记录够3x3个数据后进行rgb转换
READ_DATA: nextState = (cnt_data >= 3) ? COLOR_GEN : READ_DATA;
COLOR_GEN: nextState = SEND_DATA;
SEND_DATA: nextState = (in_receive) ? SLIDE_WINDOW : SEND_DATA;
SLIDE_WINDOW: nextState = READ_DATA;
default: nextState = READ_DATA;
endcase
end
// 请求数据
assign out_ready = (cnt_data <= 2 && !in_en && state == READ_DATA && !reset) ? 1 : 0;
// 收到数据
assign out_receive = (in_en && state == READ_DATA && !reset) ? 1 : 0;
// 各状态执行的操作
always @(posedge clk) begin
if (reset) begin
// 外部输出初始化
out_en <= 0;
out_r <= 0;
out_g <= 0;
out_r <= 0;
// 内部寄存器初始化
pos_x <= 0;
pos_y <= 0;
cnt_data <= 0;
raw_type <= RAW_TYPE;
end else begin
// 状态机执行
case (state)
// 读取数据
READ_DATA: begin
if (in_en) begin
data_cache[0 + cnt_data * 3] <= in_data[0];
data_cache[1 + cnt_data * 3] <= in_data[1];
data_cache[2 + cnt_data * 3] <= in_data[2];
cnt_data <= cnt_data + 1;
end
end
COLOR_GEN: begin
// 生成rgb图像
// data case 0 case 1 case 2 case 3
// 0 3 6 G R G R G R B G B G B G
// 1 4 7 B G B G B G G R G R G R
// 2 5 8 G R G R G R B G B G B G
case (raw_type)
0: begin // Missing B, R on G
blue <= (data_cache[1] + data_cache[7]) >> 1;
red <= (data_cache[3] + data_cache[5]) >> 1;
green <= data_cache[4];
end
1: begin // Missing G, R on B
green <= (data_cache[1] + data_cache[3] + data_cache[5] + data_cache[7]) >> 2;
red <= (data_cache[0] + data_cache[2] + data_cache[6] + data_cache[8]) >> 2;
blue <= data_cache[4];
end
2: begin // Missing G, B on R
green <= (data_cache[1] + data_cache[3] + data_cache[5] + data_cache[7]) >> 2;
blue <= (data_cache[0] + data_cache[2] + data_cache[6] + data_cache[8]) >> 2;
red <= data_cache[4];
end
3: begin // Missing B, R on G
red <= (data_cache[1] + data_cache[7]) >> 1;
blue <= (data_cache[3] + data_cache[5]) >> 1;
green <= data_cache[4];
end
default: ;
endcase
case (raw_type)
0: raw_type <= 1;
1: raw_type <= 0;
2: raw_type <= 3;
3: raw_type <= 2;
endcase
end
SEND_DATA: begin
if (in_ready && !in_receive) begin
out_en <= 1;
out_r <= red;
out_b <= blue;
out_g <= green;
end else out_en <= 0;
end
SLIDE_WINDOW: begin
// 记录位置寄存器自增,并处理缓存数据
pos_x <= pos_x + 1;
if (pos_x >= IM_WIDTH - 2 - 1) begin
cnt_data <= 0;
pos_x <= 0;
pos_y <= pos_y + 1;
if (pos_y >= IM_HEIGHT - 2 - 1) begin
pos_y <= 0;
end
// 换行后切换Bayer格式
if (pos_y % 2 == 1) begin
raw_type <= RAW_TYPE;
end else begin
case (RAW_TYPE)
0: raw_type <= 2;
1: raw_type <= 3;
2: raw_type <= 0;
3: raw_type <= 1;
default: ;
endcase
end
end else begin
cnt_data <= 2;
// 窗口右移
data_cache[0] <= data_cache[3];
data_cache[1] <= data_cache[4];
data_cache[2] <= data_cache[5];
data_cache[3] <= data_cache[6];
data_cache[4] <= data_cache[7];
data_cache[5] <= data_cache[8];
end
end
default: ;
endcase
end
end
endmodule

View File

@ -1,10 +1,7 @@
`timescale 1ns/1ps
module isp #(
parameter reg [15:0] IN_WIDTH = 1936,
parameter reg [15:0] IN_HEIGHT = 1088,
parameter OFFSET_X = 7,
parameter OFFSET_Y = 3,
parameter reg [15:0] OUT_WIDTH = 1920,
parameter reg [15:0] OUT_HEIGHT = 1080,
parameter reg [ 4:0] COLOR_DEPTH = 8, // Can't Change!!!
@ -14,86 +11,107 @@ module isp #(
input wire clk,
input wire reset,
// 数据线
// 数据输入信号
input wire in_en,
input wire [15:0] in_data[3], // 数据输入线0、1、2分别表示第一、二、三行
output wire out_ready, // 数据请求线,高电平:请求三个数据,直到读取完才拉低
output wire out_receive,
// output wire out_clk,
output wire out_en,
output wire [3 * COLOR_DEPTH - 1:0] out_data,
// 数据有效信号
input wire in_valid,
output wire out_valid,
// 准备信号
input wire in_ready,
output wire out_ready,
// input wire in_receive,
// 颜色校正,低八位为小数位,高八位为整数位
input wire [15:0] gain_red,
input wire [15:0] gain_green,
input wire [15:0] gain_blue,
input wire blender_enable // 是否启用颜色校正
input wire blender_enable, // 是否启用颜色校正
// Gamma矫正低八位为小数位
// input wire [7:0] gamma_inverse,
input wire [7:0] gamma_table[256],
input wire gamma_enable,
// 白平衡
input wire [15:0] white_gain[3],
input wire [8:0] flame_rate,
input wire white_enable,
// 饱和度校正
input wire signed [31:0] saturation_inc,
input wire saturation_enable // -256~256
);
localparam reg [15:0] BAYER_WIDTH = IN_WIDTH - 2;
localparam reg [15:0] BAYER_HEIGHT = IN_HEIGHT - 2;
wire [15:0] Demosaic2_data[3];
wire [15:0] Windows_data[9];
wire [COLOR_DEPTH - 1 : 0] Blender_data[3];
wire [COLOR_DEPTH - 1 : 0] Crop_data[3];
wire Windows_valid, Demosaic2_valid, Blender_valid, Crop_valid;
wire Windows_ready, Demosaic2_ready, Blender_ready, Crop_ready;
wire Demosaic2_hsync, Blender_hsync, Crop_hsync;
wire Demosaic2_fsync, Blender_fsync, Crop_fsync;
assign out_valid = Crop_valid;
assign out_ready = Windows_ready;
assign out_data = {Crop_data[2], Crop_data[1], Crop_data[0]};
wire [COLOR_DEPTH - 1:0] w_out_data[3];
assign out_data = {w_out_data[2], w_out_data[1], w_out_data[0]};
Windows #(
.DATA_WIDTH(16)
) Windows_inst (
// 颜色校正,并改变色深
wire blender_en, blender_ready, blender_receive;
wire [15:0] blender_r, blender_g, blender_b;
// 裁切图像
wire crop_en, crop_ready, crop_receive; // scaler 请求数据
reg [COLOR_DEPTH - 1:0] crop_data[3];
// Gamma矫正
wire gamma_en, gamma_ready, gamma_receive;
wire [COLOR_DEPTH - 1 : 0] gamma_data[3];
// 白平衡
wire white_en, white_ready, white_receive;
wire [COLOR_DEPTH - 1 : 0] white_data[3];
// 饱和度校正
wire saturation_en, saturation_ready, saturation_receive;
wire [COLOR_DEPTH - 1 : 0] saturation_data[3];
// reg in_receive;
// always @(posedge clk) in_receive <= in_en;
wire in_receive;
assign in_receive = out_en;
// assign out_clk = clk;
Demosaic2 #(
.IM_WIDTH (IN_WIDTH),
.IM_HEIGHT(IN_HEIGHT),
.RAW_TYPE (RAW_TYPE)
) inst_demosaic (
.clk(clk),
.reset(reset),
.in_en(in_en),
.in_data(in_data),
.out_data (Windows_data),
.in_valid (in_valid),
.out_valid(Windows_valid),
.in_ready (Demosaic2_ready),
.out_ready(Windows_ready)
);
.out_ready(out_ready),
.out_receive(out_receive),
Demosaic #(
.WINDOW_LENGTH(3),
.TOTAL_WIDTH (IN_WIDTH),
.TOTAL_HEIGHT (IN_HEIGHT),
.RAW_TYPE (RAW_TYPE),
.DATA_WIDTH (16)
) Demosaic2_inst (
.clk (clk),
.reset (reset),
.in_data (Windows_data),
.out_data (Demosaic2_data),
.in_valid (Windows_valid),
.out_valid(Demosaic2_valid),
.in_ready (Blender_ready),
.out_ready(Demosaic2_ready),
.out_hsync(Demosaic2_hsync),
.out_fsync(Demosaic2_fsync)
.out_en(blender_en),
.in_ready(blender_ready),
.in_receive(blender_receive),
.out_r(blender_r),
.out_g(blender_g),
.out_b(blender_b)
);
ColorBlender #(
.IN_DEPTH(12), // 输入图像的色深
.OUT_DEPTH(COLOR_DEPTH) // 输出图像的色深
) ColorBlender_inst (
.IN_DEPTH (12),
.OUT_DEPTH(COLOR_DEPTH)
) inst_blender (
.clk (clk),
.reset(reset),
.in_data (Demosaic2_data),
.out_data (Blender_data),
.in_valid (Demosaic2_valid),
.out_valid(Blender_valid),
.in_ready (Crop_ready),
.out_ready(Blender_ready),
.in_hsync (Demosaic2_hsync),
.in_fsync (Demosaic2_fsync),
.out_hsync(Blender_hsync),
.out_fsync(Blender_fsync),
.in_en(blender_en),
.in_data({blender_b, blender_g, blender_r}),
.out_ready(blender_ready),
.out_receive(blender_receive),
.in_ready(crop_ready),
.in_receive(crop_receive),
.out_en(crop_en),
.out_data(crop_data),
.gain_red(gain_red),
.gain_green(gain_green),
@ -102,52 +120,87 @@ module isp #(
);
Crop #(
.IN_WIDTH (IN_WIDTH),
.IN_HEIGHT (IN_HEIGHT),
.OFFSET_X (OFFSET_X),
.OFFSET_Y (OFFSET_Y),
.IN_WIDTH(BAYER_WIDTH),
.IN_HEIGHT(BAYER_HEIGHT),
.OUT_WIDTH(OUT_WIDTH),
.OUT_HEIGHT(OUT_HEIGHT),
.COLOR_DEPTH(COLOR_DEPTH)
) Crop_inst (
) inst_crop (
.clk (clk),
.reset(reset),
.in_data (Blender_data),
.out_data (Crop_data),
.in_valid (Blender_valid),
.out_valid(Crop_valid),
.in_ready (in_ready),
.out_ready(Crop_ready),
.in_hsync (Blender_hsync),
.in_fsync (Blender_fsync),
.out_hsync(Crop_hsync),
.out_fsync(Crop_fsync)
.in_en(crop_en),
.out_ready(crop_ready),
.out_receive(crop_receive),
.in_data({crop_data[2], crop_data[1], crop_data[0]}),
.out_en(white_en),
.in_ready(white_ready),
.in_receive(white_receive),
.out_data({white_data[2], white_data[1], white_data[0]})
);
// reg [15:0] data_out_temp[8192];
// reg [31:0] now;
// reg [2:0] cnt_www;
// reg flag_ifdataerror;
GreyWorld #(
.COLOR_DEPTH(COLOR_DEPTH),
.IM_SIZE({16'b0, OUT_WIDTH} * {16'b0, OUT_HEIGHT})
) inst_whitebalance (
.clk (clk),
.reset(reset),
// initial cnt_www = 0;
// always @(posedge reset) begin
// cnt_www <= cnt_www + 1;
// end
.in_en(white_en),
.in_data(white_data),
.out_ready(white_ready),
.out_receive(white_receive),
// integer i;
// always @(posedge clk) begin
// if(reset) begin
// flag_ifdataerror <= 0;
// if(cnt_www==1) for(i=0;i<8192;i=i+1) data_out_temp[i] <= 0;
// now <= 0;
// end else if(Crop_valid && in_ready)begin
// now <= now + 1;
// if(cnt_www==1)begin
// if(now<8192) data_out_temp[now] <= Crop_data[0];
// end else if(cnt_www==2)begin
// flag_ifdataerror <= (data_out_temp[now] != Crop_data[0]);
// end else flag_ifdataerror <= flag_ifdataerror;
// end
// end
.in_ready(gamma_ready),
.in_receive(gamma_receive),
.out_en(gamma_en),
.out_data(gamma_data),
.enable(white_enable),
.flame_rate(flame_rate),
.white_gain(white_gain)
);
// 查找表型Gamma校正
GammaCorrection #(
.COLOR_DEPTH(COLOR_DEPTH)
) inst_gamma (
.clk (clk),
.reset(reset),
.in_en(gamma_en),
.in_data(gamma_data),
.out_ready(gamma_ready),
.out_receive(gamma_receive),
.in_ready(saturation_ready),
.in_receive(saturation_receive),
.out_en(saturation_en),
.out_data(saturation_data),
.gamma_table(gamma_table),
.enable(gamma_enable)
);
SaturationCorrection #(
.COLOR_DEPTH(COLOR_DEPTH)
) inst_saturation (
.clk (clk),
.reset(reset),
.in_en(saturation_en),
.out_ready(saturation_ready),
.out_receive(saturation_receive),
.in_data(saturation_data),
.in_ready(in_ready),
.in_receive(in_receive),
.out_en(out_en),
.out_data(w_out_data),
.saturation_inc(saturation_inc),
.enable(saturation_enable)
);
endmodule

153
rtl/isp_Pipeline.sv Normal file
View File

@ -0,0 +1,153 @@
`timescale 1ns / 1ps
module isp #(
parameter reg [15:0] IN_WIDTH = 1936,
parameter reg [15:0] IN_HEIGHT = 1088,
parameter OFFSET_X = 7,
parameter OFFSET_Y = 3,
parameter reg [15:0] OUT_WIDTH = 1920,
parameter reg [15:0] OUT_HEIGHT = 1080,
parameter reg [ 4:0] COLOR_DEPTH = 8, // Can't Change!!!
parameter reg [ 1:0] RAW_TYPE = 3 // 0:grbg 1:rggb 2:bggr 3:gbrg
) (
// 基本信号
input wire clk,
input wire reset,
// 数据线
input wire [15:0] in_data[3], // 数据输入线0、1、2分别表示第一、二、三行
output wire [3 * COLOR_DEPTH - 1:0] out_data,
// 数据有效信号
input wire in_valid,
output wire out_valid,
// 准备信号
input wire in_ready,
output wire out_ready,
// 颜色校正,低八位为小数位,高八位为整数位
input wire [15:0] gain_red,
input wire [15:0] gain_green,
input wire [15:0] gain_blue,
input wire blender_enable // 是否启用颜色校正
);
wire [15:0] Demosaic2_data[3];
wire [15:0] Windows_data[9];
wire [COLOR_DEPTH - 1 : 0] Blender_data[3];
wire [COLOR_DEPTH - 1 : 0] Crop_data[3];
wire Windows_valid, Demosaic2_valid, Blender_valid, Crop_valid;
wire Windows_ready, Demosaic2_ready, Blender_ready, Crop_ready;
wire Demosaic2_hsync, Blender_hsync, Crop_hsync;
wire Demosaic2_fsync, Blender_fsync, Crop_fsync;
assign out_valid = Crop_valid;
assign out_ready = Windows_ready;
assign out_data = {Crop_data[2], Crop_data[1], Crop_data[0]};
Windows #(
.DATA_WIDTH(16)
) Windows_inst (
.clk (clk),
.reset (reset),
.in_data (in_data),
.out_data (Windows_data),
.in_valid (in_valid),
.out_valid(Windows_valid),
.in_ready (Demosaic2_ready),
.out_ready(Windows_ready)
);
Demosaic #(
.WINDOW_LENGTH(3),
.TOTAL_WIDTH (IN_WIDTH),
.TOTAL_HEIGHT (IN_HEIGHT),
.RAW_TYPE (RAW_TYPE),
.DATA_WIDTH (16)
) Demosaic2_inst (
.clk (clk),
.reset (reset),
.in_data (Windows_data),
.out_data (Demosaic2_data),
.in_valid (Windows_valid),
.out_valid(Demosaic2_valid),
.in_ready (Blender_ready),
.out_ready(Demosaic2_ready),
.out_hsync(Demosaic2_hsync),
.out_fsync(Demosaic2_fsync)
);
ColorBlender #(
.IN_DEPTH(12), // 输入图像的色深
.OUT_DEPTH(COLOR_DEPTH) // 输出图像的色深
) ColorBlender_inst (
.clk (clk),
.reset (reset),
.in_data (Demosaic2_data),
.out_data (Blender_data),
.in_valid (Demosaic2_valid),
.out_valid(Blender_valid),
.in_ready (Crop_ready),
.out_ready(Blender_ready),
.in_hsync (Demosaic2_hsync),
.in_fsync (Demosaic2_fsync),
.out_hsync(Blender_hsync),
.out_fsync(Blender_fsync),
.gain_red (gain_red),
.gain_green(gain_green),
.gain_blue (gain_blue),
.enable (blender_enable)
);
Crop #(
.IN_WIDTH (IN_WIDTH),
.IN_HEIGHT (IN_HEIGHT),
.OFFSET_X (OFFSET_X),
.OFFSET_Y (OFFSET_Y),
.OUT_WIDTH (OUT_WIDTH),
.OUT_HEIGHT (OUT_HEIGHT),
.COLOR_DEPTH(COLOR_DEPTH)
) Crop_inst (
.clk (clk),
.reset (reset),
.in_data (Blender_data),
.out_data (Crop_data),
.in_valid (Blender_valid),
.out_valid(Crop_valid),
.in_ready (in_ready),
.out_ready(Crop_ready),
.in_hsync (Blender_hsync),
.in_fsync (Blender_fsync),
.out_hsync(Crop_hsync),
.out_fsync(Crop_fsync)
);
// reg [15:0] data_out_temp[8192];
// reg [31:0] now;
// reg [2:0] cnt_www;
// reg flag_ifdataerror;
// initial cnt_www = 0;
// always @(posedge reset) begin
// cnt_www <= cnt_www + 1;
// end
// integer i;
// always @(posedge clk) begin
// if(reset) begin
// flag_ifdataerror <= 0;
// if(cnt_www==1) for(i=0;i<8192;i=i+1) data_out_temp[i] <= 0;
// now <= 0;
// end else if(Crop_valid && in_ready)begin
// now <= now + 1;
// if(cnt_www==1)begin
// if(now<8192) data_out_temp[now] <= Crop_data[0];
// end else if(cnt_www==2)begin
// flag_ifdataerror <= (data_out_temp[now] != Crop_data[0]);
// end else flag_ifdataerror <= flag_ifdataerror;
// end
// end
endmodule

87
src/img_process/bmp.cpp Executable file
View File

@ -0,0 +1,87 @@
#include "bmp.hpp"
#include <iostream>
// 将RGB24格式像素数据封装为BMP图像
bool write_bmp(const char *filename, uint8_t *data, int32_t width,
int32_t height) {
BMPFileHeader file_header = {0};
BMPInfoHeader info_header = {0};
std::ofstream ofs(filename, std::ios::binary);
if (!ofs) {
std::cerr << "Failed to create file: " << filename << std::endl;
return false;
}
// BMP文件头
file_header.type = 0x4D42; // BM
file_header.size =
sizeof(BMPFileHeader) + sizeof(BMPInfoHeader) + width * height * 3;
file_header.offset = sizeof(BMPFileHeader) + sizeof(BMPInfoHeader);
ofs.write(reinterpret_cast<char *>(&file_header), sizeof(file_header));
// BMP位图信息头
info_header.size = sizeof(BMPInfoHeader);
info_header.width = width;
info_header.height = height;
info_header.planes = 1;
info_header.bit_count = 24;
info_header.size_image = width * height * 3;
ofs.write(reinterpret_cast<char *>(&info_header), sizeof(info_header));
// 像素数据
int32_t row_size = (((width + 1) * 3) / 4) * 4; // 行字节数必须为4的倍数
uint8_t *row_data = new uint8_t[row_size];
for (int32_t y = height - 1; y >= 0; --y) { // BMP图像的行是从下往上存储的
for (int32_t x = 0; x < width; ++x) {
row_data[x * 3 + 2] = data[(y * width + x) * 3 + 0]; // B
row_data[x * 3 + 1] = data[(y * width + x) * 3 + 1]; // G
row_data[x * 3 + 0] = data[(y * width + x) * 3 + 2]; // R
}
ofs.write(reinterpret_cast<char *>(row_data), row_size);
}
delete[] row_data;
ofs.close();
return true;
}
bool writeBMP(std::ofstream &pic_file, std::vector<uint8_t> &pic_data,
const int32_t pic_width, const int32_t pic_height) {
BMPFileHeader file_header = {0};
BMPInfoHeader info_header = {0};
// Check file
if (!pic_file || !pic_file.is_open()) {
std::printf("Failed to open file!\n");
return false;
}
// Write file header
file_header.type = 0x4D42; // BM
file_header.size =
sizeof(BMPFileHeader) + sizeof(BMPInfoHeader) + pic_width * pic_height * 3;
file_header.offset = sizeof(BMPFileHeader) + sizeof(BMPInfoHeader);
pic_file.write(reinterpret_cast<char *>(&file_header), sizeof(file_header));
// Write info header
info_header.size = sizeof(BMPInfoHeader);
info_header.width = pic_width;
info_header.height = pic_height;
info_header.planes = 1;
info_header.bit_count = 24;
info_header.size_image = pic_width * pic_height * 3;
pic_file.write(reinterpret_cast<char *>(&info_header), sizeof(info_header));
// Write BMP
int32_t row_size = (((pic_width + 1) * 3) / 4) * 4; // 行字节数必须为4的倍数
uint8_t *row_data = new uint8_t[row_size];
for (int32_t y = pic_height - 1; y >= 0; --y) { // BMP图像的行是从下往上存储的
for (int32_t x = 0; x < pic_width; ++x) {
row_data[x * 3 + 2] = pic_data[(y * pic_width + x) * 3 + 0]; // B
row_data[x * 3 + 1] = pic_data[(y * pic_width + x) * 3 + 1]; // G
row_data[x * 3 + 0] = pic_data[(y * pic_width + x) * 3 + 2]; // R
}
pic_file.write(reinterpret_cast<char *>(row_data), row_size);
}
delete[] row_data;
return true;
}

43
src/img_process/bmp.hpp Executable file
View File

@ -0,0 +1,43 @@
#ifndef __BMP_H__
#define __BMP_H__
#include <stdint.h>
#include <cstdint>
#include <cstdio>
#include <fstream>
#include <vector>
#pragma pack(push, 1) // 1字节对齐
// BMP文件头结构体
struct BMPFileHeader {
uint16_t type; // 文件类型,必须为"BM"
uint32_t size; // 文件大小,单位为字节
uint16_t reserved1; // 保留字段必须为0
uint16_t reserved2; // 保留字段必须为0
uint32_t offset; // 像素数据起始位置,单位为字节
};
// BMP位图信息头结构体
struct BMPInfoHeader {
uint32_t size; // 信息头大小必须为40
int32_t width; // 图像宽度,单位为像素
int32_t height; // 图像高度,单位为像素
uint16_t planes; // 颜色平面数必须为1
uint16_t bit_count; // 每个像素的位数必须为24
uint32_t compression; // 压缩方式必须为0
uint32_t size_image; // 像素数据大小,单位为字节
int32_t x_pels_per_meter; // X方向像素数/米
int32_t y_pels_per_meter; // Y方向像素数/米
uint32_t clr_used; // 使用的颜色数必须为0
uint32_t clr_important; // 重要的颜色数必须为0
};
#pragma pack(pop)
bool write_bmp(const char *filename, uint8_t *data, int32_t width,
int32_t height);
bool writeBMP(std::ofstream &pic_file, std::vector<uint8_t> &pic_data,
const int32_t pic_width, const int32_t pic_height);
#endif

View File

@ -10,14 +10,504 @@
#include <verilated_vcd_sc.h>
// Include model header, generated from Verilating "isp.v"
#include "obj_dir/Visp.h"
#include "tb_isp.hpp"
#include "Visp.h"
// Read/Write Files
// Handle file
#include <fstream>
#include <iostream>
int sc_main(int argc, const char** argv) {
// math
#include <cmath>
#include "bmp.hpp"
static const uint16_t IN_WIDTH = 1936;
static const uint16_t IN_HEIGHT = 1088;
static const uint32_t IN_SIZE = (IN_WIDTH * IN_HEIGHT);
static const uint16_t OUT_WIDTH = 1920;
static const uint16_t OUT_HEIGHT = 1080;
static const uint32_t OUT_SIZE = (OUT_WIDTH * OUT_HEIGHT);
static const uint32_t FLAMES = 2;
// Input image path and Output directory path
#ifndef INPUT_IMG
const char *INPUT_IMG = "./src/transform/test.bin";
#endif
#ifndef OUTPUT_DIR
const char *OUTPUT_DIR = "./logs/";
#endif
// color gain for correcting color
struct color_gain {
double red;
double green;
double blue;
} color_gain{1.1, 0.7, 1.3}, white_gain;
static const double gamma_value = 2.2;
static const double saturation_inc = 0.5;
static const double contrast = 1.2;
// static const double white_radio = 0.1;
using namespace sc_core;
using namespace sc_dt;
bool picProcess(uint32_t *image, uint16_t number);
SC_MODULE(TB_ISP) {
sc_in_clk clk;
sc_in<bool> reset;
sc_in<bool> in_ready;
sc_in<bool> in_receive;
sc_out<bool> out_en;
sc_out<uint32_t> out_data[3];
sc_in<bool> im_en;
sc_out<bool> out_ready;
// sc_out<bool> out_receceive;
sc_in<uint32_t> im_data;
sc_out<bool> is_done;
std::unique_ptr<uint16_t[]> image = std::make_unique<uint16_t[]>(IN_SIZE);
std::vector<uint32_t> process_image = std::vector<uint32_t>(
OUT_SIZE, 0); // after isp process, the data of image
SC_CTOR(TB_ISP) {
SC_CTHREAD(send_Data, clk.pos());
reset_signal_is(reset, true);
SC_CTHREAD(read_Data, clk.pos());
}
void send_Data(void) {
uint16_t pos_x = 0, pos_y = 0, cnt_flame = 0;
bool is_finish = false;
while (true) {
if (in_ready.read() && !is_finish) {
out_en.write(1);
printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y,
image[(pos_y + 0) * IN_WIDTH + pos_x]);
printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y,
image[(pos_y + 1) * IN_WIDTH + pos_x]);
printf("x=%4d, y=%4d, data=0x%04x\n", pos_x, pos_y,
image[(pos_y + 2) * IN_WIDTH + pos_x]);
out_data[0].write(image[(pos_y + 0) * IN_WIDTH + pos_x]);
out_data[1].write(image[(pos_y + 1) * IN_WIDTH + pos_x]);
out_data[2].write(image[(pos_y + 2) * IN_WIDTH + pos_x]);
pos_x++;
if (pos_x >= IN_WIDTH) {
pos_x = 0;
pos_y++;
}
if (pos_y >= IN_HEIGHT - 2) {
pos_y = 0;
cnt_flame++;
}
if (cnt_flame >= FLAMES) {
is_finish = true;
}
} else {
out_en.write(0);
}
wait();
}
}
void read_Data(void) {
is_done.write(0);
uint32_t pos_x = 0, pos_y = 0, cnt_flame = 0;
uint32_t last_data = 0, cnt = 0;
bool is_finish = false;
while (true) {
if (im_en.read() && !is_finish) {
out_ready.write(false);
process_image[pos_y * OUT_WIDTH + pos_x] = im_data.read();
pos_x++;
if (pos_x >= OUT_WIDTH) {
pos_x = 0;
pos_y++;
}
if (pos_y >= OUT_HEIGHT) {
pos_y = 0;
saveData(
("output_img_" + std::to_string(cnt_flame) + ".bmp").c_str());
cnt_flame++;
}
if (cnt_flame >= FLAMES) {
is_finish = true;
}
} else {
out_ready.write(true);
// out_receceive.write(false);
}
// when data didn't change some time, it end
if (last_data == im_data.read() && is_finish) {
cnt++;
if (cnt >= 100000L) {
is_done.write(1);
printf("x=%d, y=%d\n", pos_x, pos_y);
}
} else {
cnt = 0;
}
last_data = im_data.read();
wait();
}
}
bool saveData(const char *name) {
bool ret = true;
// Check Image Size
if (process_image.size() > OUT_SIZE) {
std::cout << "Process Image Over Size!!!\n"
<< "Image Size:" << process_image.size() << "\n";
return false;
}
// Transform isp image
std::vector<uint8_t> bmp_image(3 * OUT_SIZE);
for (int i = 0; i < OUT_SIZE; i++) {
bmp_image[3 * i + 0] = (process_image[i] & 0x00ff0000) >> 16;
bmp_image[3 * i + 1] = (process_image[i] & 0x0000ff00) >> 8;
bmp_image[3 * i + 2] = (process_image[i] & 0x000000ff) >> 0;
}
// Write BMP image
std::ofstream bmp;
bmp.open(std::string(OUTPUT_DIR) + name);
if (!bmp.is_open()) {
std::cout << "Output File Open Failed!!!\n";
return false;
}
ret = writeBMP(bmp, bmp_image, OUT_WIDTH, OUT_HEIGHT);
bmp.close();
return ret;
}
};
bool picProcess(uint32_t *image, uint16_t number) {
uint8_t *data = new uint8_t[OUT_WIDTH * OUT_HEIGHT * 3]; // RGB24格式像素数据
// software algorthms analyze
uint32_t red_total = 0, green_total = 0, blue_total = 0;
uint8_t red_max = 0, green_max = 0, blue_max = 0;
for (int32_t y = 0; y < OUT_HEIGHT; ++y) {
for (int32_t x = 0; x < OUT_WIDTH; ++x) {
int32_t index = (y * OUT_WIDTH + x) * 3;
uint8_t red = (image[y * OUT_WIDTH + x] & 0x00ff0000) >> 16;
uint8_t green = (image[y * OUT_WIDTH + x] & 0x0000ff00) >> 8;
uint8_t blue = (image[y * OUT_WIDTH + x] & 0x000000ff);
// Adjust gamma line
// red = 255 * std::pow(red / 255.0, 1 / gamma_value);
// green = 255 * std::pow(green / 255.0, 1 / gamma_value);
// blue = 255 * std::pow(blue / 255.0, 1 / gamma_value);
// Calculate white balance data
// red_max = std::max(red_max, red);
// green_max = std::max(green_max, green);
// blue_max = std::max(blue_max, blue);
// red_total += red;
// green_total += green;
// blue_total += blue;
// Adjust vibrance
// uint8_t max = std::max({red, green, blue});
// uint8_t min = std::min({red, green, blue});
// double delta = (max - min) / 255.0;
// double value = (max + min) / 255.0;
// if (delta != 0) {
// double L = value / 2.0;
// // double S = (L <= 0.5) ? delta / value : delta / (2 -
// value); double S = delta / max; double alpha = 0.0; if
// (saturation_inc >= 0) {
// if ((saturation_inc + S) >= 1)
// alpha = S;
// else
// alpha = 1 - saturation_inc;
// alpha = 1 / alpha - 1;
// red = static_cast<uchar>(red + (red - L * 255) * alpha);
// green =
// static_cast<uchar>(green + (green - L * 255) *
// alpha);
// blue = static_cast<uchar>(blue + (blue - L * 255) *
// alpha);
// } else {
// alpha = saturation_inc;
// red = static_cast<uchar>(L * 255 +
// (red - L * 255) * (1 + alpha));
// green = static_cast<uchar>(L * 255 +
// (green - L * 255) * (1 +
// alpha));
// blue = static_cast<uchar>(L * 255 +
// (blue - L * 255) * (1 +
// alpha));
// }
// }
// Contrast enhancement
// red = static_cast<uchar>(contrast * (red - 128) + 128);
// green = static_cast<uchar>(contrast * (green - 128) + 128);
// blue = static_cast<uchar>(contrast * (blue - 128) + 128);
// save data
data[index + 0] = red; // R
data[index + 1] = green; // G
data[index + 2] = blue; // B
}
}
// Adjust White Balance : Grey World Color Correction
// double K = static_cast<double>(red_total + green_total + blue_total) /
// (3 * OUT_SIZE);
// white_gain.red = static_cast<double>(K * OUT_SIZE) / red_total;
// white_gain.green = static_cast<double>(K * OUT_SIZE) / green_total;
// white_gain.blue = static_cast<double>(K * OUT_SIZE) / blue_total;
// printf("Gain: red = %f, green = %f, blue = %f", white_gain.red,
// white_gain.green, white_gain.blue);
// for (int32_t y = 0; y < OUT_HEIGHT; ++y) {
// for (int32_t x = 0; x < OUT_WIDTH; ++x) {
// int32_t index = (y * OUT_WIDTH + x) * 3;
// data[index + 0] =
// static_cast<uint8_t>(white_gain.red * data[index + 0]);
// data[index + 1] =
// static_cast<uint8_t>(white_gain.green * data[index + 1]);
// data[index + 2] =
// static_cast<uint8_t>(white_gain.blue * data[index + 2]);
// }
// }
// save to bmp
std::cout << "Ready to save raw RGB image" << std::endl;
char file_name[64] = {0};
snprintf(file_name, sizeof(file_name), "pic_%d.bmp", number);
write_bmp(file_name, data, OUT_WIDTH, OUT_HEIGHT);
delete[] data;
return true;
}
int sc_main(int argc, char *argv[]) {
std::cout << "Get into sc_main" << std::endl;
// Open image
std::ifstream in_image;
in_image.open(INPUT_IMG, std::ios::in | std::ios::binary);
if (!in_image.is_open()) {
std::cout << "Open image fail" << std::endl;
exit(0);
} else {
std::cout << "Ready to sim" << std::endl;
}
// Read image
auto buf = std::make_unique<uint8_t[]>(2 * IN_SIZE);
in_image.read((char *)buf.get(), IN_SIZE * 2);
in_image.close();
// Reshape data
auto image = std::make_unique<uint16_t[]>(IN_SIZE);
uint32_t i = 0;
for (int y = 0; y < IN_HEIGHT; y++) {
for (int x = 0; x < IN_WIDTH; x++) {
image[y * IN_WIDTH + x] = (uint16_t)buf[i] + ((uint16_t)buf[i + 1] << 8);
i += 2;
}
}
std::cout << "Finish Reading data" << std::endl;
// This is a more complicated example, please also see the simpler
// examples/make_hello_c.
// Create logs/ directory in case we have traces to put under it
Verilated::mkdir("logs");
// Set debug level, 0 is off, 9 is highest presently used
// May be overridden by commandArgs argument parsing
Verilated::debug(0);
// Randomization reset policy
// May be overridden by commandArgs argument parsing
Verilated::randReset(2);
// Before any evaluation, need to know to calculate those signals only used
// for tracing
Verilated::traceEverOn(true);
// Pass arguments so Verilated code can see them, e.g. $value$plusargs
// This needs to be called before you create any model
Verilated::commandArgs(argc, argv);
// General logfile
std::ios::sync_with_stdio();
// Define clocks
sc_clock clk{"clk", 10, SC_NS, 0.5, 3, SC_NS, true};
// Define interconnect
sc_signal<bool> reset;
sc_signal<bool> in_en;
sc_signal<bool> in_ready;
// sc_signal<bool> in_receive;
sc_signal<uint32_t> in_data[3];
sc_signal<bool> out_clk;
sc_signal<bool> out_en;
sc_signal<bool> out_ready;
sc_signal<bool> out_receive;
sc_signal<uint32_t> out_data;
sc_signal<bool> blender_enable;
sc_signal<uint32_t> gain_red;
sc_signal<uint32_t> gain_green;
sc_signal<uint32_t> gain_blue;
sc_signal<bool> gamma_enable;
sc_signal<uint32_t> gamma_inverse;
sc_signal<uint32_t> gamma_table[256];
sc_signal<uint32_t> white_gain[3];
sc_signal<uint32_t> flame_rate;
sc_signal<bool> white_enable;
sc_signal<bool> saturation_enable;
sc_signal<uint32_t> saturation_increase;
sc_signal<bool> flag_done;
// Construct the Verilated model, from inside Visp.h
// Using unique_ptr is similar to "Visp* isp = new Visp" then deleting at
// end
const std::unique_ptr<Visp> isp{new Visp{"isp"}};
// Attach Visp's signals to this upper model
isp->clk(clk);
isp->reset(reset);
isp->in_en(in_en);
isp->in_ready(in_ready);
// isp->in_receive(in_receive);
isp->in_data[0](in_data[0]);
isp->in_data[1](in_data[1]);
isp->in_data[2](in_data[2]);
isp->out_en(out_en);
isp->out_ready(out_ready);
isp->out_receive(out_receive);
isp->out_data(out_data);
isp->gain_red(gain_red);
isp->gain_green(gain_green);
isp->gain_blue(gain_blue);
isp->blender_enable(blender_enable);
isp->gamma_enable(gamma_enable);
// isp->gamma_inverse(gamma_inverse);
isp->white_enable(white_enable);
isp->flame_rate(flame_rate);
isp->white_gain[0](white_gain[0]);
isp->white_gain[1](white_gain[1]);
isp->white_gain[2](white_gain[2]);
isp->saturation_enable(saturation_enable);
isp->saturation_inc(saturation_increase);
blender_enable = true; // enable color correction
gain_red = static_cast<uint32_t>(color_gain.red * std::pow(2, 8));
gain_green = static_cast<uint32_t>(color_gain.green * std::pow(2, 8));
gain_blue = static_cast<uint32_t>(color_gain.blue * std::pow(2, 8));
gamma_enable = true;
gamma_inverse = static_cast<uint32_t>((1.0 / gamma_value) * std::pow(2, 8));
for (int i = 0; i < 256; i++) {
// calculate gamma table
isp->gamma_table[i](gamma_table[i]);
gamma_table[i] =
static_cast<uint32_t>(255 * pow(i / 255.0, 1.0 / gamma_value));
}
white_enable = true;
flame_rate = 0;
white_gain[0] = 255;
white_gain[1] = 255;
white_gain[2] = 255;
saturation_enable = true;
saturation_increase =
(int32_t)((saturation_inc >= 0) ? (saturation_inc * std::pow(2, 8))
: (saturation_inc * std::pow(2, 8)));
// Construct testbench module
TB_ISP tb_isp("tb_isp");
tb_isp.clk(clk);
tb_isp.reset(reset);
tb_isp.in_ready(out_ready);
tb_isp.in_receive(out_receive);
tb_isp.out_en(in_en);
tb_isp.out_ready(in_ready);
// tb_isp.out_receceive(in_receive);
tb_isp.out_data[0](in_data[0]);
tb_isp.out_data[1](in_data[1]);
tb_isp.out_data[2](in_data[2]);
tb_isp.im_en(out_en);
tb_isp.im_data(out_data);
tb_isp.is_done(flag_done);
tb_isp.image = std::move(image);
// You must do one evaluation before enabling waves, in order to allow
// SystemC to interconnect everything for testing.
sc_start(SC_ZERO_TIME);
// If verilator was invoked with --trace argument,
// and if at run time passed the +trace argument, turn on tracing
VerilatedVcdSc *tfp = nullptr;
const char *flag = Verilated::commandArgsPlusMatch("trace");
if (flag && 0 == std::strcmp(flag, "+trace")) {
std::cout << "Enabling waves into logs/vlt_dump.vcd...\n";
tfp = new VerilatedVcdSc;
isp->trace(tfp, 99); // Trace 99 levels of hierarchy
Verilated::mkdir("logs");
tfp->open("logs/vlt_dump.vcd");
}
// Simulate until $finish
while (!Verilated::gotFinish()) {
// Flush the wave files each cycle so we can immediately see the OUTPUT_DIR
// Don't do this in "real" programs, do it in an abort() handler instead
if (tfp)
tfp->flush();
// Apply inputs
if (sc_time_stamp() < sc_time(10, SC_NS)) {
reset.write(1); // Assert reset
} else {
reset.write(0); // Deassert reset
}
if (flag_done.read())
break;
// Simulate 1ns
sc_start(1, SC_NS);
}
// Final model cleanup
isp->final();
// Close trace if opened
if (tfp) {
tfp->close();
tfp = nullptr;
}
// Return good completion status
return 0;
}

View File

@ -1,35 +1,44 @@
// For std::unique_ptr
#include <memory>
// For read and write
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <ios>
#include <iostream>
// SystemC global header
#include <systemc>
// Include common routines
#include <string>
#include <sys/stat.h> // mkdir
#include <utility>
#include <vector>
#include <verilated.h>
#include <verilated_vcd_sc.h>
// Include model header, generated from Verilating "isp.v"
#include "Visp.h"
// Handle file
#include <fstream>
#include <iostream>
// math
#include <cmath>
// Write Pictures
#include "bmp.hpp"
#include "sysc/communication/sc_signal.h"
#include "sysc/kernel/sc_module.h"
// Image Parameters
static const uint16_t IN_WIDTH = 1936;
static const uint16_t IN_HEIGHT = 1088;
static const uint32_t IN_SIZE = (IN_WIDTH * IN_HEIGHT);
static const uint16_t OUT_WIDTH = 1920;
static const uint16_t OUT_HEIGHT = 1080;
static const uint32_t OUT_SIZE = (OUT_WIDTH * OUT_HEIGHT);
static const uint32_t FLAMES = 2;
static const uint32_t CNT_FLAME = 2;
// color gain for correcting color
// Input image path and Output directory path
const char *input = "./src/transform/test.bin";
const char *output = "./logs/";
// Modules Configuration
struct color_gain {
double red;
double green;
@ -37,258 +46,188 @@ struct color_gain {
} color_gain{1.1, 0.7, 1.3}, white_gain;
static const double gamma_value = 2.2;
static const double saturation_inc = 0.5;
static const double sat_inc = 0.5;
static const double contrast = 1.2;
// static const double white_radio = 0.1;
using namespace sc_core;
using namespace sc_dt;
bool picProcess(uint32_t *image, uint16_t number);
SC_MODULE(TB_ISP) {
sc_in_clk clk;
sc_in<bool> reset;
sc_in<bool> rst;
sc_in<bool> in_ready;
sc_out<bool> out_valid;
sc_out<uint32_t> out_data[3];
sc_in<bool> in_ready; // next module ready to receive data
sc_out<bool> out_valid; // next module data valid signal
sc_out<uint32_t> out_data[3]; // next module receive data
sc_in<bool> im_clk;
sc_in<bool> im_en;
sc_out<bool> out_ready;
sc_in<uint32_t> im_data;
sc_in<bool> in_valid; // this module receive data valid signal
sc_out<bool> out_ready; // this module ready to receive data
sc_in<uint32_t> in_data; // this module receive data
sc_out<bool> is_done;
std::unique_ptr<uint16_t[]> image = std::make_unique<uint16_t[]>(IN_SIZE);
std::unique_ptr<uint32_t[]> out = std::make_unique<uint32_t[]>(OUT_SIZE);
bool is_done; // when receive all data
std::vector<uint16_t> image; // the data of image
std::vector<uint32_t> process_image = std::vector<uint32_t>(
OUT_SIZE, 0); // after isp process, the data of image
SC_CTOR(TB_ISP) {
SC_CTHREAD(send_Data, clk.pos());
reset_signal_is(reset, true);
SC_CTHREAD(sendData, clk.pos()); // when clk posedge, exec sendData
reset_signal_is(rst, true); // set rst signal
SC_CTHREAD(read_Data, im_clk.pos());
SC_CTHREAD(readData, clk.pos());
reset_signal_is(rst, true); // set rst signal
}
void send_Data(void) {
void sendData(void) {
// init var
uint16_t pos_x = 0, pos_y = 0, cnt_flame = 0;
bool is_finish = false;
while (true) {
if (in_ready.read() && !is_finish) {
out_valid.write(1);
bool is_finish = false; // when send all data
// reset
out_valid = false;
for (auto &data : out_data)
data = 0;
printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y,
while (true) {
if (in_ready && !is_finish) {
// valid and send data
out_valid = true;
out_data[0] = image[(pos_y + 0) * IN_WIDTH + pos_x];
out_data[1] = image[(pos_y + 1) * IN_WIDTH + pos_x];
out_data[2] = image[(pos_y + 2) * IN_WIDTH + pos_x];
// print data
std::printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y,
image[(pos_y + 0) * IN_WIDTH + pos_x]);
printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y,
std::printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y,
image[(pos_y + 1) * IN_WIDTH + pos_x]);
printf("x=%4d, y=%4d, data=0x%04x\n", pos_x, pos_y,
std::printf("x=%4d, y=%4d, data=0x%04x\n", pos_x, pos_y,
image[(pos_y + 2) * IN_WIDTH + pos_x]);
out_data[0].write(image[(pos_y + 0) * IN_WIDTH + pos_x]);
out_data[1].write(image[(pos_y + 1) * IN_WIDTH + pos_x]);
out_data[2].write(image[(pos_y + 2) * IN_WIDTH + pos_x]);
pos_x++;
if (pos_x >= IN_WIDTH) {
// calculate position and recognize when to finish
if (++pos_x >= IN_WIDTH) {
pos_x = 0;
pos_y++;
}
if (pos_y >= IN_HEIGHT - 2) {
if (++pos_y >= IN_HEIGHT - 2) { // demosaic window is 3x3
pos_y = 0;
cnt_flame++;
}
if (cnt_flame >= FLAMES) {
if (++cnt_flame >= CNT_FLAME) {
is_finish = true;
}
}
else {
out_valid.write(0);
}
} else {
out_valid = false;
}
// wait for next clk
wait();
}
}
void read_Data(void) {
is_done.write(0);
void readData(void) {
// init local var
uint16_t pos_x = 0, pos_y = 0, cnt_flame = 0;
uint32_t last_data = 0, cnt = 0;
bool is_finish = false;
// reset
out_ready = false;
is_done = false;
while (true) {
// when not finish, read data
if (!is_finish) {
out_ready.write(true);
if (im_en.read()) {
out[pos_y * OUT_WIDTH + pos_x] = im_data.read();
out_ready = true;
pos_x++;
if (pos_x >= IN_WIDTH) {
// when data valid, write it down
if (in_valid) {
process_image[pos_y * OUT_WIDTH + pos_x] = in_data;
// calculate position
if (++pos_x >= OUT_WIDTH) {
pos_x = 0;
pos_y++;
}
if (pos_y >= IN_HEIGHT - 2) {
if (++pos_y >= OUT_HEIGHT) {
pos_y = 0;
cnt_flame++;
}
}
}
else {
out_ready.write(false);
if (++cnt_flame >= CNT_FLAME) {
is_finish = true;
}
// when data didn't change some time, it end
if (last_data == im_data.read() && is_finish) {
// Save image
saveData(
("output_img_" + std::to_string(cnt_flame) + ".bmp").c_str());
}
}
}
} else {
out_ready = false;
}
// when no data send, give finish signal
if (is_finish && (last_data == in_data)) {
cnt++;
if (cnt >= 100000L) {
is_done.write(1);
printf("x=%d, y=%d\n", pos_x, pos_y);
if (cnt >= 100000L) { // when receive many times the same data
is_done = true;
std::printf("Finish Reading data; pos_x = %d, pos_y = %d\n", pos_x,
pos_y);
}
}
else {
} else {
cnt = 0;
}
last_data = im_data.read();
last_data = in_data;
// wait for next clk
wait();
}
}
bool saveData(const char *name) {
bool ret = true;
// Transform isp image
std::vector<uint8_t> bmp_image(3 * OUT_SIZE);
for (int i = 0; i < OUT_SIZE; i++) {
bmp_image[i + 0] = (process_image[i] & 0x00ff0000) >> 16;
bmp_image[i + 1] = (process_image[i] & 0x0000ff00) >> 8;
bmp_image[i + 2] = (process_image[i] & 0x000000ff) >> 0;
}
// Write BMP image
std::ofstream bmp;
bmp.open(std::string(output) + name);
if (!bmp.is_open()) {
std::cout << "Output File Open Failed!!!\n";
return false;
}
ret = writeBMP(bmp, bmp_image, OUT_WIDTH, OUT_HEIGHT);
bmp.close();
return ret;
}
};
bool picProcess(uint32_t *image, uint16_t number) {
uint8_t *data =
new uint8_t[OUT_WIDTH * OUT_HEIGHT * 3]; // RGB24格式像素数据
// software algorthms analyze
uint32_t red_total = 0, green_total = 0, blue_total = 0;
uint8_t red_max = 0, green_max = 0, blue_max = 0;
for (int32_t y = 0; y < OUT_HEIGHT; ++y) {
for (int32_t x = 0; x < OUT_WIDTH; ++x) {
int32_t index = (y * OUT_WIDTH + x) * 3;
uint8_t red = (image[y * OUT_WIDTH + x] & 0x00ff0000) >> 16;
uint8_t green = (image[y * OUT_WIDTH + x] & 0x0000ff00) >> 8;
uint8_t blue = (image[y * OUT_WIDTH + x] & 0x000000ff);
// Adjust gamma line
// red = 255 * std::pow(red / 255.0, 1 / gamma_value);
// green = 255 * std::pow(green / 255.0, 1 / gamma_value);
// blue = 255 * std::pow(blue / 255.0, 1 / gamma_value);
// Calculate white balance data
// red_max = std::max(red_max, red);
// green_max = std::max(green_max, green);
// blue_max = std::max(blue_max, blue);
// red_total += red;
// green_total += green;
// blue_total += blue;
// Adjust vibrance
// uint8_t max = std::max({red, green, blue});
// uint8_t min = std::min({red, green, blue});
// double delta = (max - min) / 255.0;
// double value = (max + min) / 255.0;
// if (delta != 0) {
// double L = value / 2.0;
// // double S = (L <= 0.5) ? delta / value : delta / (2 -
// value); double S = delta / max; double alpha = 0.0; if
// (saturation_inc >= 0) {
// if ((saturation_inc + S) >= 1)
// alpha = S;
// else
// alpha = 1 - saturation_inc;
// alpha = 1 / alpha - 1;
// red = static_cast<uchar>(red + (red - L * 255) * alpha);
// green =
// static_cast<uchar>(green + (green - L * 255) *
// alpha);
// blue = static_cast<uchar>(blue + (blue - L * 255) *
// alpha);
// } else {
// alpha = saturation_inc;
// red = static_cast<uchar>(L * 255 +
// (red - L * 255) * (1 + alpha));
// green = static_cast<uchar>(L * 255 +
// (green - L * 255) * (1 +
// alpha));
// blue = static_cast<uchar>(L * 255 +
// (blue - L * 255) * (1 +
// alpha));
// }
// }
// Contrast enhancement
// red = static_cast<uchar>(contrast * (red - 128) + 128);
// green = static_cast<uchar>(contrast * (green - 128) + 128);
// blue = static_cast<uchar>(contrast * (blue - 128) + 128);
// save data
data[index + 0] = red; // R
data[index + 1] = green; // G
data[index + 2] = blue; // B
}
}
// Adjust White Balance : Grey World Color Correction
// double K = static_cast<double>(red_total + green_total + blue_total) /
// (3 * OUT_SIZE);
// white_gain.red = static_cast<double>(K * OUT_SIZE) / red_total;
// white_gain.green = static_cast<double>(K * OUT_SIZE) / green_total;
// white_gain.blue = static_cast<double>(K * OUT_SIZE) / blue_total;
// printf("Gain: red = %f, green = %f, blue = %f", white_gain.red,
// white_gain.green, white_gain.blue);
// for (int32_t y = 0; y < OUT_HEIGHT; ++y) {
// for (int32_t x = 0; x < OUT_WIDTH; ++x) {
// int32_t index = (y * OUT_WIDTH + x) * 3;
// data[index + 0] =
// static_cast<uint8_t>(white_gain.red * data[index + 0]);
// data[index + 1] =
// static_cast<uint8_t>(white_gain.green * data[index + 1]);
// data[index + 2] =
// static_cast<uint8_t>(white_gain.blue * data[index + 2]);
// }
// }
// save to bmp
std::cout << "Ready to save raw RGB image" << std::endl;
char file_name[64] = { 0 };
snprintf(file_name, sizeof(file_name), "pic_%d.bmp", number);
write_bmp(file_name, data, OUT_WIDTH, OUT_HEIGHT);
delete[] data;
return true;
}
int sc_main(int argc, char *argv[]) {
std::cout << "Get into sc_main" << std::endl;
// Open image
std::ifstream in_image;
in_image.open("./transform/test.bin", std::ios::in | std::ios::binary);
if (!in_image.is_open()) {
std::cout << "Open image fail" << std::endl;
std::printf("Enter into sc_main\n");
// Open Image
std::ifstream image;
image.open(input, std::ios::in | std::ios::binary);
// Check image whether is open
if (!image.is_open()) {
std::printf("Open Image Failed!!!\n");
exit(0);
}
else {
std::cout << "Ready to sim" << std::endl;
} else {
std::printf("Open Image Successfully!!!\n");
}
// Read image
auto buf = std::make_unique<uint8_t[]>(2 * IN_SIZE);
in_image.read((char *)buf.get(), IN_SIZE * 2);
in_image.close();
// Reshape data
auto image = std::make_unique<uint16_t[]>(IN_SIZE);
// Read and Transform Image
std::vector<uint16_t> in_image(IN_SIZE);
char *buf = new char[2 * IN_SIZE];
image.read(buf, sizeof(buf));
uint32_t i = 0;
for (int y = 0; y < IN_HEIGHT; y++) {
for (int x = 0; x < IN_WIDTH; x++) {
image[y * IN_WIDTH + x] =
(uint16_t)buf[i] + ((uint16_t)buf[i + 1] << 8);
for (int x = 0; x < IN_HEIGHT; x++) {
in_image[y * IN_HEIGHT + x] =
static_cast<uint16_t>(i) + (static_cast<uint16_t>(i + 1) << 8);
i += 2;
}
}
std::cout << "Finish Reading data" << std::endl;
// Close and delete image
image.close();
delete[] buf;
std::printf("Finish Reading Image\n");
// This is a more complicated example, please also see the simpler
// examples/make_hello_c.
@ -318,108 +257,112 @@ int sc_main(int argc, char *argv[]) {
// Define clocks
sc_clock clk{"clk", 10, SC_NS, 0.5, 3, SC_NS, true};
// Define interconnect
sc_signal<bool> reset;
sc_signal<bool> rst;
// ISP Modules in ports
sc_signal<bool> in_valid;
sc_signal<bool> in_ready;
sc_signal<uint32_t> in_data[3];
sc_signal<bool> out_clk;
// ISP Modules out ports
sc_signal<bool> out_valid;
sc_signal<bool> out_ready;
sc_signal<bool> out_receive;
sc_signal<uint32_t> out_data;
// ISP Modules Enable Ports
sc_signal<bool> blender_enable;
sc_signal<bool> gamma_enable;
sc_signal<bool> white_enable;
sc_signal<bool> saturation_enable;
// ISP Modules Configurations Ports
sc_signal<uint32_t> gain_red;
sc_signal<uint32_t> gain_green;
sc_signal<uint32_t> gain_blue;
sc_signal<bool> gamma_enable;
sc_signal<uint32_t> gamma_inverse;
sc_signal<uint32_t> gamma_table[256];
sc_signal<uint32_t> white_gain[3];
sc_signal<uint32_t> flame_rate;
sc_signal<bool> white_enable;
sc_signal<bool> saturation_enable;
sc_signal<uint32_t> saturation_increase;
sc_signal<bool> flag_done;
sc_signal<uint32_t> saturation_inc;
sc_signal<uint32_t> gamma_table[256];
sc_signal<uint32_t> white_gain[3];
// Construct the Verilated model, from inside Visp.h
// Using unique_ptr is similar to "Visp* isp = new Visp" then deleting at the end
const std::unique_ptr<Visp> isp{ new Visp{"isp"} };
// Attach Visp's signals to this upper model
isp->clk(clk);
isp->reset(reset);
isp->in_valid(in_valid);
isp->in_ready(in_ready);
isp->in_data[0](in_data[0]);
isp->in_data[1](in_data[1]);
isp->in_data[2](in_data[2]);
isp->out_valid(out_valid);
isp->out_ready(out_ready);
isp->out_data(out_data);
Visp isp("Visp");
// isp.clk(clk);
// isp.reset(rst);
// // Connect input signal
// isp.in_valid(in_valid);
// isp.in_ready(in_ready);
// for (int i = 0; i < 3; i++)
// isp.in_data[i](in_data[i]);
// // Connect output signal
// isp.out_valid(out_valid);
// isp.out_ready(out_ready);
// isp.out_data(out_data);
// // Connect ISP modules enable signal
// isp.blender_enable(blender_enable);
// // Connect ISP modules configuration signal
// isp.gain_red(gain_red);
// isp.gain_green(gain_green);
// isp.gain_blue(gain_blue);
isp->gain_red(gain_red);
isp->gain_green(gain_green);
isp->gain_blue(gain_blue);
isp->blender_enable(blender_enable);
// isp->gamma_enable(gamma_enable);
// isp->gamma_inverse(gamma_inverse);
// isp->white_enable(white_enable);
// isp->flame_rate(flame_rate);
// isp->white_gain[0](white_gain[0]);
// isp->white_gain[1](white_gain[1]);
// isp->white_gain[2](white_gain[2]);
// isp->saturation_enable(saturation_enable);
// isp->saturation_inc(saturation_increase);
// blender_enable = true; // enable color correction
// gain_red = static_cast<uint32_t>(color_gain.red * std::pow(2, 8));
// gain_green = static_cast<uint32_t>(color_gain.green * std::pow(2, 8));
// gain_blue = static_cast<uint32_t>(color_gain.blue * std::pow(2, 8));
// gamma_enable = true;
// gamma_inverse = static_cast<uint32_t>((1.0 / gamma_value) * std::pow(2, 8));
// for (int i = 0; i < 256; i++) {
// // calculate gamma table
// isp->gamma_table[i](gamma_table[i]);
// gamma_table[i] = static_cast<uint32_t>(255 * pow(i / 255.0, 1.0 / gamma_value));
// }
// white_enable = true;
// flame_rate = 0;
// white_gain[0] = 255;
// white_gain[1] = 255;
// white_gain[2] = 255;
// saturation_enable = true;
// saturation_increase =
// (int32_t)((saturation_inc >= 0) ? (saturation_inc * std::pow(2, 8))
// : (saturation_inc * std::pow(2, 8)));
// ISP Old Version
isp.clk(clk);
isp.reset(rst);
isp.in_en(in_valid);
isp.in_ready(in_ready);
for (int i = 0; i < 3; i++)
isp.in_data[i](in_data[i]);
sc_signal<bool> out_receive;
isp.out_receive(out_receive);
isp.out_en(out_valid);
isp.out_ready(out_ready);
isp.out_data(out_data);
isp.blender_enable(blender_enable);
isp.gamma_enable(gamma_enable);
isp.white_enable(white_enable);
isp.saturation_enable(saturation_enable);
isp.gain_red(gain_red);
isp.gain_green(gain_green);
isp.gain_blue(gain_blue);
isp.flame_rate(flame_rate);
isp.saturation_inc(saturation_inc);
for (int i = 0; i < 256; i++)
isp.gamma_table[i](gamma_table[i]);
for (int i = 0; i < 3; i++)
isp.white_gain[i](white_gain[i]);
// Construct testbench module
TB_ISP tb_isp("tb_isp");
tb_isp.image = std::move(in_image);
tb_isp.clk(clk);
tb_isp.reset(reset);
tb_isp.rst(rst);
// Connect input signal
tb_isp.in_valid(out_valid);
tb_isp.in_ready(out_ready);
tb_isp.in_data(out_data);
// Connect output signal
tb_isp.out_valid(in_valid);
tb_isp.out_ready(in_ready);
// tb_isp.out_receceive(in_receive);
tb_isp.out_data[0](in_data[0]);
tb_isp.out_data[1](in_data[1]);
tb_isp.out_data[2](in_data[2]);
tb_isp.im_clk(out_clk);
tb_isp.im_en(out_valid);
tb_isp.im_data(out_data);
tb_isp.is_done(flag_done);
tb_isp.image = move(image);
for (int i = 0; i < 3; i++)
tb_isp.out_data[i](in_data[i]);
// Set ISP modules parameters
// Color Blender
blender_enable = true;
gain_red = static_cast<uint32_t>(color_gain.red * std::pow(2, 8));
gain_green = static_cast<uint32_t>(color_gain.green * std::pow(2, 8));
gain_blue = static_cast<uint32_t>(color_gain.blue * std::pow(2, 8));
// Gamma table
gamma_enable = true;
for (int i = 0; i < 256; i++) {
gamma_table[i] =
static_cast<uint32_t>(255 * pow(i / 255.0, 1.0 / gamma_value));
}
// White Correction
white_enable = true;
flame_rate = 0;
white_gain[0] = 255;
white_gain[1] = 255;
white_gain[2] = 255;
// Saturation Correction
saturation_enable = true;
saturation_inc = (int32_t)((sat_inc >= 0) ? (sat_inc * std::pow(2, 8))
: (sat_inc * std::pow(2, 8)));
// You must do one evaluation before enabling waves, in order to allow
// SystemC to interconnect everything for testing.
@ -432,33 +375,35 @@ int sc_main(int argc, char *argv[]) {
if (flag && 0 == std::strcmp(flag, "+trace")) {
std::cout << "Enabling waves into logs/vlt_dump.vcd...\n";
tfp = new VerilatedVcdSc;
isp->trace(tfp, 99); // Trace 99 levels of hierarchy
isp.trace(tfp, 99); // Trace 99 levels of hierarchy
Verilated::mkdir("logs");
tfp->open("logs/vlt_dump.vcd");
}
// Simulate until $finish
std::cout << "Ready to simulate!\n";
while (!Verilated::gotFinish()) {
// Flush the wave files each cycle so we can immediately see the output
// Don't do this in "real" programs, do it in an abort() handler instead
if (tfp) tfp->flush();
if (tfp)
tfp->flush();
// Apply inputs
if (sc_time_stamp() < sc_time(10, SC_NS)) {
reset.write(1); // Assert reset
}
else {
reset.write(0); // Deassert reset
rst.write(1); // Assert reset
} else {
rst.write(0); // Deassert reset
}
if (flag_done.read()) break;
if (tb_isp.is_done)
break;
// Simulate 1ns
sc_start(1, SC_NS);
}
// Final model cleanup
isp->final();
isp.final();
// Close trace if opened
if (tfp) {

View File

View File

@ -1,24 +0,0 @@
#ifndef __TB_ISP_HPP__
#define __TB_ISP_HPP__
#include "sysc/communication/sc_signal_ports.h"
#include <systemc>
namespace testbench {
using namespace sc_core;
using namespace sc_dt;
SC_MODULE(TB_ISP) {
sc_in_clk clk;
sc_in<bool> rst;
sc_in<bool> in_ready;
sc_out<bool> out_valid;
sc_out<sc_uint<8>> out_data[3];
sc_in<uint32_t> in_data;
};
} // namespace testbench
#endif

View File

@ -1,46 +0,0 @@
#include "bmp.hpp"
#include <fstream>
#include <iostream>
// 将RGB24格式像素数据封装为BMP图像
bool write_bmp(const char* filename, uint8_t* data, int32_t width,
int32_t height) {
BMPFileHeader file_header = {0};
BMPInfoHeader info_header = {0};
std::ofstream ofs(filename, std::ios::binary);
if (!ofs) {
std::cerr << "Failed to create file: " << filename << std::endl;
return false;
}
// BMP文件头
file_header.type = 0x4D42; // BM
file_header.size =
sizeof(BMPFileHeader) + sizeof(BMPInfoHeader) + width * height * 3;
file_header.offset = sizeof(BMPFileHeader) + sizeof(BMPInfoHeader);
ofs.write(reinterpret_cast<char*>(&file_header), sizeof(file_header));
// BMP位图信息头
info_header.size = sizeof(BMPInfoHeader);
info_header.width = width;
info_header.height = height;
info_header.planes = 1;
info_header.bit_count = 24;
info_header.size_image = width * height * 3;
ofs.write(reinterpret_cast<char*>(&info_header), sizeof(info_header));
// 像素数据
int32_t row_size = (((width + 1) * 3) / 4) * 4; // 行字节数必须为4的倍数
uint8_t* row_data = new uint8_t[row_size];
for (int32_t y = height - 1; y >= 0; --y) { // BMP图像的行是从下往上存储的
for (int32_t x = 0; x < width; ++x) {
row_data[x * 3 + 2] = data[(y * width + x) * 3 + 0]; // B
row_data[x * 3 + 1] = data[(y * width + x) * 3 + 1]; // G
row_data[x * 3 + 0] = data[(y * width + x) * 3 + 2]; // R
}
ofs.write(reinterpret_cast<char*>(row_data), row_size);
}
delete[] row_data;
ofs.close();
return true;
}

View File

@ -1,35 +0,0 @@
#ifndef __BMP_H__
#define __BMP_H__
#include <stdint.h>
#pragma pack(push, 1) // 1字节对齐
// BMP文件头结构体
struct BMPFileHeader {
uint16_t type; // 文件类型,必须为"BM"
uint32_t size; // 文件大小,单位为字节
uint16_t reserved1; // 保留字段必须为0
uint16_t reserved2; // 保留字段必须为0
uint32_t offset; // 像素数据起始位置,单位为字节
};
// BMP位图信息头结构体
struct BMPInfoHeader {
uint32_t size; // 信息头大小必须为40
int32_t width; // 图像宽度,单位为像素
int32_t height; // 图像高度,单位为像素
uint16_t planes; // 颜色平面数必须为1
uint16_t bit_count; // 每个像素的位数必须为24
uint32_t compression; // 压缩方式必须为0
uint32_t size_image; // 像素数据大小,单位为字节
int32_t x_pels_per_meter; // X方向像素数/米
int32_t y_pels_per_meter; // Y方向像素数/米
uint32_t clr_used; // 使用的颜色数必须为0
uint32_t clr_important; // 重要的颜色数必须为0
};
#pragma pack(pop)
bool write_bmp(const char* filename, uint8_t* data, int32_t width, int32_t height);
#endif

View File

@ -7,9 +7,16 @@ local INCLUDE_DIRS = path.splitenv(
target("TB_ISP")
set_toolchains("gcc")
set_languages("c++17")
--- C/C++ Codes
add_files(
"src/**.cpp"
)
--- Include directories
add_includedirs("src", ".", INCLUDE_DIRS)
add_includedirs(
".",
"src",
"obj_dir",
"src/img_process",
INCLUDE_DIRS
)