switch lsp to clangd and reconstruct project

This commit is contained in:
2024-09-15 22:04:48 +08:00
parent 61b91e0688
commit 7e12105a3d
47 changed files with 1931 additions and 2859 deletions

99
rtl/Color/ColorBlender.sv Normal file
View File

@@ -0,0 +1,99 @@
`timescale 1ns / 1ps
// 三通道图像合成一个RGB图像
module ColorBlender #(
parameter reg [4:0] IN_DEPTH = 12, // 输入图像的色深
parameter reg [4:0] OUT_DEPTH = 8 // 输出图像的色深
) (
input wire clk,
input wire reset,
input wire [16 - 1:0] in_data [3],
output reg [OUT_DEPTH - 1:0] out_data [3],
input wire in_valid,
output wire out_valid,
input wire in_ready,
output wire out_ready,
input wire in_hsync,
input wire in_fsync,
output wire out_hsync,
output wire out_fsync,
// 颜色校正
input wire [15:0] gain_red,
input wire [15:0] gain_green,
input wire [15:0] gain_blue,
input wire enable
);
localparam PIPELINE = 4;
reg [PIPELINE-1:0] pipeline_hsync, pipeline_fsync, pipeline_valid;
wire pipeline_flag;
assign pipeline_flag = (pipeline_valid[PIPELINE-1] == 0) | (in_ready);
//out_ready :只要本模块可以接收数据就一直拉高
assign out_ready = pipeline_flag;
//out_valid :只要本模块有数据要发送就一直拉高
assign out_valid = pipeline_valid[PIPELINE-1];
assign out_hsync = pipeline_hsync[PIPELINE-1];
assign out_fsync = pipeline_fsync[PIPELINE-1];
reg [32 - 1:0] data_cal0[3];
reg [32 - 1:0] data_cal1[3];
reg [32 - 1:0] data_cal2[3];
integer i;
always @(posedge clk) begin
if(reset) begin
pipeline_valid <= 0;
pipeline_hsync <= 0;
pipeline_fsync <= 0;
for(i=0;i<3;i=i+1) data_cal0[i] <= 0;
for(i=0;i<3;i=i+1) data_cal1[i] <= 0;
for(i=0;i<3;i=i+1) data_cal2[i] <= 0;
for(i=0;i<3;i=i+1) out_data[i] <= 0;
end else if(pipeline_flag) begin
/************* 流水 ************/
pipeline_valid <= {pipeline_valid[PIPELINE-2:0], in_valid};
pipeline_hsync <= {pipeline_hsync[PIPELINE-2:0], in_hsync};
pipeline_fsync <= {pipeline_fsync[PIPELINE-2:0], in_fsync};
/************* 1:计算1 ************/
if(in_valid) begin
data_cal0[0] <= ({16'b0, in_data[0]}) << (8 - (IN_DEPTH - OUT_DEPTH));
data_cal0[1] <= ({16'b0, in_data[1]}) << (8 - (IN_DEPTH - OUT_DEPTH));
data_cal0[2] <= ({16'b0, in_data[2]}) << (8 - (IN_DEPTH - OUT_DEPTH));
end
/************* 2:计算2 ************/
if(pipeline_valid[0]) begin
if(enable) begin
data_cal1[0] <= (data_cal0[0] * {16'b0, gain_red}) >> 16;
data_cal1[1] <= (data_cal0[1] * {16'b0, gain_green}) >> 16;
data_cal1[2] <= (data_cal0[2] * {16'b0, gain_blue}) >> 16;
end else begin
data_cal1[0] <= data_cal0[0] >> 8;
data_cal1[1] <= data_cal0[1] >> 8;
data_cal1[2] <= data_cal0[2] >> 8;
end
end
/************* 3:计算3 ************/
if(pipeline_valid[1]) begin
data_cal2[0] <= (data_cal1[0][31 : OUT_DEPTH] != 0) ? {32{1'b1}} : data_cal1[0];
data_cal2[1] <= (data_cal1[1][31 : OUT_DEPTH] != 0) ? {32{1'b1}} : data_cal1[1];
data_cal2[2] <= (data_cal1[2][31 : OUT_DEPTH] != 0) ? {32{1'b1}} : data_cal1[2];
end
/************* 4:发送结果 ************/
if(pipeline_valid[2]) begin
out_data[0] <= data_cal2[0][OUT_DEPTH-1:0];
out_data[1] <= data_cal2[1][OUT_DEPTH-1:0];
out_data[2] <= data_cal2[2][OUT_DEPTH-1:0];
end
end
end
endmodule

106
rtl/Color/GammaCorrection.sv Executable file
View File

@@ -0,0 +1,106 @@
`timescale 1ns / 1ps
module GammaCorrection #(
parameter reg [4:0] COLOR_DEPTH = 8
) (
input wire clk,
input wire reset,
input wire in_en,
input wire [COLOR_DEPTH - 1 : 0] in_data[3],
output wire out_ready,
output wire out_receive,
output reg out_en,
output reg [COLOR_DEPTH - 1 : 0] out_data[3],
input wire in_ready,
input wire in_receive,
input wire [7:0] gamma_table[256],
input wire enable
);
reg [2:0] state, nextState;
localparam reg [2:0] READ_DATA = 0;
localparam reg [2:0] SEND_DATA = 2;
reg [7:0] data_cache[3];
always @(posedge clk)
begin
if (reset)
state <= READ_DATA;
else
state <= nextState;
end
always @(*)
begin
case (state)
READ_DATA:
nextState = in_en ? SEND_DATA : READ_DATA;
SEND_DATA:
nextState = in_receive ? READ_DATA : SEND_DATA;
default:
nextState = READ_DATA;
endcase
end
assign out_ready = (!in_en && state == READ_DATA && !reset) ? 1 : 0;
assign out_receive = (in_en && state == READ_DATA && !reset) ? 1 : 0;
always @(posedge clk)
begin
if (reset)
begin
out_en <= 0;
out_data[0] <= 0;
out_data[1] <= 0;
out_data[2] <= 0;
data_cache[0] <= 0;
data_cache[1] <= 0;
data_cache[2] <= 0;
end
else
begin
case (state)
READ_DATA:
begin
if (in_en)
begin
data_cache[0] <= in_data[0];
data_cache[1] <= in_data[1];
data_cache[2] <= in_data[2];
end
end
SEND_DATA:
begin
if (in_ready && !in_receive)
begin
out_en <= 1;
if (enable)
begin
out_data[0] <= gamma_table[data_cache[0]];
out_data[1] <= gamma_table[data_cache[1]];
out_data[2] <= gamma_table[data_cache[2]];
end
else
begin
out_data[0] <= data_cache[0];
out_data[1] <= data_cache[1];
out_data[2] <= data_cache[2];
end
end
else
out_en <= 0;
end
default:
;
endcase
end
end
endmodule

160
rtl/Color/GreyWorld.sv Executable file
View File

@@ -0,0 +1,160 @@
`timescale 1ns / 1ps
// 三通道图像合成一个RGB图像
module GreyWorld #(
parameter reg [4:0] COLOR_DEPTH = 8,
parameter reg [31:0] IM_SIZE = 1920 * 1080
) (
input wire clk,
input wire reset,
input wire in_en,
input wire [7:0] in_data[3], // 0:R 1:G 2:B
output wire out_ready,
output wire out_receive,
// 输出相关
input wire in_ready,
input wire in_receive,
output reg out_en,
output reg [COLOR_DEPTH - 1:0] out_data[3],
// Gain: red = 0.803881, green = 0.885894, blue = 1.594308
input wire enable,
input wire [8:0] flame_rate,
input wire [15:0] white_gain[3]
);
reg [2:0] state, nextState, calState;
localparam reg [2:0] READ_DATA = 0;
localparam reg [2:0] CALC_DATA = 1;
localparam reg [2:0] SEND_DATA = 2;
reg [8:0] cnt_flame;
reg [31:0] red_total, green_total, blue_total;
reg [39:0] r_white_gain[3];
reg [31:0] data_cal[3], data_cache[3];
reg [31:0] cnt_pexels;
reg [39:0] average;
reg isCal;
always @(posedge clk) begin
if (reset) state <= READ_DATA;
else state <= nextState;
end
always @(*) begin
case (state)
READ_DATA: nextState = in_en ? CALC_DATA : READ_DATA;
CALC_DATA: nextState = isCal ? CALC_DATA : SEND_DATA;
SEND_DATA: nextState = in_receive ? READ_DATA : SEND_DATA;
default: nextState = READ_DATA;
endcase
end
assign out_ready = (!in_en && state == READ_DATA && !reset) ? 1 : 0;
assign out_receive = (in_en && state == READ_DATA && !reset) ? 1 : 0;
// assign average = (({8'b0, red_total } + {8'b0, green_total } + {8'b0, blue_total }) << 8) / 3 ;
// assign isCal = cnt_pexels >= IM_SIZE && cnt_flame == flame_rate;
always @(posedge clk) begin
if (reset) begin
red_total <= 0;
green_total <= 0;
blue_total <= 0;
cnt_flame <= flame_rate;
cnt_pexels <= 0;
calState <= 4;
r_white_gain[0] <= {24'b0, white_gain[0] };
r_white_gain[1] <= {24'b0, white_gain[1] };
r_white_gain[2] <= {24'b0, white_gain[2] };
data_cache[0] <= 0;
data_cache[1] <= 0;
data_cache[2] <= 0;
out_en <= 0;
out_data[0] <= 0;
out_data[1] <= 0;
out_data[2] <= 0;
end else begin
case (state)
READ_DATA: begin
if (in_en) begin
data_cache[0] <= {24'b0, in_data[0]};
data_cache[1] <= {24'b0, in_data[1]};
data_cache[2] <= {24'b0, in_data[2]};
if (cnt_flame == flame_rate) begin
red_total <= red_total + {24'b0, in_data[0]};
green_total <= green_total + {24'b0, in_data[1]};
blue_total <= blue_total + {24'b0, in_data[2]};
end
if (cnt_pexels <= IM_SIZE) begin
cnt_pexels <= cnt_pexels + 1;
end else begin
cnt_pexels <= 0;
if (cnt_flame < flame_rate) cnt_flame <= cnt_flame + 1;
else cnt_flame <= 0;
if (cnt_pexels >= IM_SIZE && cnt_flame == flame_rate) isCal <= 1;
end
end
end
CALC_DATA: begin
if (calState == 0) begin
average <= {8'b0, red_total } + {8'b0, green_total };
calState <= 1;
end
else if (calState == 1) begin
average <= average + {8'b0, blue_total};
calState <= 2;
end
else if (calState == 2) begin
average <= average << 8;
calState <= 3;
end
else if (calState == 3) begin
r_white_gain[0] <= average / {8'b0, red_total};
r_white_gain[1] <= average / {8'b0, green_total};
r_white_gain[2] <= average / {8'b0, blue_total};
isCal <= 0;
calState <= 4;
end
else if (calState == 4) begin
data_cal[0] <= (data_cache[0] * r_white_gain[0][31:0]);
data_cal[1] <= (data_cache[1] * r_white_gain[1][31:0]);
data_cal[2] <= (data_cache[2] * r_white_gain[2][31:0]);
calState <= 5;
end
else begin
calState <= isCal ? 0 : 4;
end
end
SEND_DATA: begin
if (in_ready) begin
out_en <= 1;
if (enable) begin
out_data[0] <= (|data_cal[0][31:16]) ? 255 : (data_cal[0] > 0 ? data_cal[0][15:8] : 0);
out_data[1] <= (|data_cal[1][31:16]) ? 255 : (data_cal[1] > 0 ? data_cal[1][15:8] : 0);
out_data[2] <= (|data_cal[2][31:16]) ? 255 : (data_cal[2] > 0 ? data_cal[2][15:8] : 0);
end else begin
out_data[0] <= data_cache[0][7:0];
out_data[1] <= data_cache[1][7:0];
out_data[2] <= data_cache[2][7:0];
end
end else out_en <= 0;
end
default: ;
endcase
end
end
endmodule

163
rtl/Color/SaturationCorrection.sv Executable file
View File

@@ -0,0 +1,163 @@
`timescale 1ns / 1ps
module SaturationCorrection #(
parameter reg [4:0] COLOR_DEPTH = 8
) (
input wire clk,
input wire reset,
input wire in_en,
input wire [COLOR_DEPTH - 1 : 0] in_data[3],
output wire out_ready,
output wire out_receive,
output reg out_en,
output reg [COLOR_DEPTH - 1 : 0] out_data[3],
input wire in_ready,
input wire in_receive,
input wire enable,
input wire signed [31:0] saturation_inc
);
reg [2:0] state, nextState, calState;
localparam reg [2:0] READ_DATA = 0;
localparam reg [2:0] CALC_DATA = 1;
localparam reg [2:0] SEND_DATA = 2;
reg signed [31:0] data_cal[3], data_cache[3];
// wire signed [31:0] max, min, delta, value, light, saturation, alpha;
reg signed [31:0] max, min, delta, value, light, saturation, alpha;
always @(posedge clk) begin
if (reset) state <= READ_DATA;
else state <= nextState;
end
always @(*) begin
case (state)
READ_DATA: nextState = in_en ? 3 : READ_DATA;
3: nextState = CALC_DATA;
CALC_DATA: nextState = (calState >= 5 || !enable) ? SEND_DATA : CALC_DATA;
SEND_DATA: nextState = in_receive ? READ_DATA : SEND_DATA;
default: nextState = READ_DATA;
endcase
end
assign out_ready = (!in_en && state == READ_DATA && !reset) ? 1 : 0;
assign out_receive = (in_en && state == READ_DATA && !reset) ? 1 : 0;
// assign max = data_cache[0] > data_cache[1]?
// (data_cache[0] > data_cache[2] ? data_cache[0] : data_cache[2]):
// (data_cache[1] > data_cache[2] ? data_cache[1] : data_cache[2]);
// assign min = data_cache[0] < data_cache[1]?
// (data_cache[0] < data_cache[2] ? data_cache[0] : data_cache[2]):
// (data_cache[1] < data_cache[2] ? data_cache[1] : data_cache[2]);
// assign delta = max - min;
// assign value = max + min;
// assign light = value >>> 1;
// // // assign saturation = (light <= 128) ? (delta <<< 8) / value : (delta <<< 8) / (512 - value);
// assign saturation = (delta <<< 8) / max;
// assign alpha = (saturation_inc[31] == 0)
// ? ((saturation_inc + saturation >= 256)
// ? (65536 / saturation) - 256 : (65536 / (256 - saturation_inc)) - 256)
// : (saturation_inc);
always @(posedge clk) begin
if (reset) begin
calState <= 0;
out_en <= 0;
out_data[0] <= 0;
out_data[1] <= 0;
out_data[2] <= 0;
min <= 0;
max <= 0;
delta <= 0;
value <= 0;
light <= 0;
saturation <= 0;
alpha <= 0;
data_cal[0] <= 0;
data_cal[1] <= 0;
data_cal[2] <= 0;
data_cache[0] <= 0;
data_cache[1] <= 0;
data_cache[2] <= 0;
end else begin
case (state)
READ_DATA: begin
if (in_en) begin
data_cache[0] <= {24'b0, in_data[0]};
data_cache[1] <= {24'b0, in_data[1]};
data_cache[2] <= {24'b0, in_data[2]};
end
end
CALC_DATA: begin
if (enable) begin
if (calState == 0) begin
max <= data_cache[0] > data_cache[1]?
(data_cache[0] > data_cache[2] ? data_cache[0] : data_cache[2]):
(data_cache[1] > data_cache[2] ? data_cache[1] : data_cache[2]);
min <= data_cache[0] < data_cache[1]?
(data_cache[0] < data_cache[2] ? data_cache[0] : data_cache[2]):
(data_cache[1] < data_cache[2] ? data_cache[1] : data_cache[2]);
calState <= 1;
end else if (calState == 1) begin
delta <= max - min;
value <= max + min;
calState <= 2;
end else if (calState == 2) begin
light <= value >>> 1;
saturation <= (delta <<< 8) / max;
calState <= 3;
end else if (calState == 3) begin
alpha <= (saturation_inc[31] == 0) ? ((saturation_inc + saturation >= 255)
? (65536 / saturation) - 255 : (65536 / (256 - saturation_inc)) - 255)
: (saturation_inc);
calState <= 4;
end else if (calState == 4) begin
if (saturation_inc[31] == 0) begin
data_cal[0] <= (data_cache[0] << 8) + ((data_cache[0] - light) * alpha);
data_cal[1] <= (data_cache[1] << 8) + ((data_cache[1] - light) * alpha);
data_cal[2] <= (data_cache[2] << 8) + ((data_cache[2] - light) * alpha);
end else begin
data_cal[0] <= (light << 8) + (data_cache[0] - light) * (256 + alpha);
data_cal[1] <= (light << 8) + (data_cache[1] - light) * (256 + alpha);
data_cal[2] <= (light << 8) + (data_cache[2] - light) * (256 + alpha);
end
calState <= 5;
end else begin
calState <= 0;
end
end
end
SEND_DATA: begin
if (in_ready && !in_receive) begin
out_en <= 1;
if (enable && delta != 0) begin
out_data[0] <= (|data_cal[0][31:16]) ? 255 : (data_cal[0] > 0 ? data_cal[0][15:8] : 0);
out_data[1] <= (|data_cal[1][31:16]) ? 255 : (data_cal[1] > 0 ? data_cal[1][15:8] : 0);
out_data[2] <= (|data_cal[2][31:16]) ? 255 : (data_cal[2] > 0 ? data_cal[2][15:8] : 0);
end else begin
out_data[0] <= data_cache[0][7:0];
out_data[1] <= data_cache[1][7:0];
out_data[2] <= data_cache[2][7:0];
end
end else out_en <= 0;
end
default: ;
endcase
end
end
endmodule

135
rtl/Color/WhiteBalance.sv Executable file
View File

@@ -0,0 +1,135 @@
`timescale 1ns / 1ps
// 三通道图像合成一个RGB图像
module WhiteBalance #(
parameter reg [4:0] IN_DEPTH = 12, // 输入图像的色深
parameter reg [4:0] OUT_DEPTH = 8, // 输出图像的色深
parameter reg [8:0] BUFF_SIZE = 32,
parameter reg [31:0] RAM_BEGIN_ADDR = 0,
parameter reg [31:0] IM_SIZE = 1920 * 1080
) (
input wire clk,
input wire reset,
input wire in_en,
input wire [15:0] in_data[3], // 0:R 1:G 2:B
output wire out_ready,
output wire out_receive,
// 输出相关
input wire in_ready,
input wire in_receive,
output wire out_en,
output wire [OUT_DEPTH - 1:0] out_data[3],
input wire enable,
input wire [8:0] flame_rate,
input wire [31:0] white_gain[3]
);
wire ram_read_en, ram_write_en, ram_read_ready, ram_write_ready;
wire [31:0] ram_read_data, ram_read_addr, ram_write_data, ram_write_addr;
reg [8:0] cnt_flame;
reg [31:0] cnt_in_pic, cnt_out_pic, cnt_pixels;
reg [31:0] red_total, green_total, blue_total;
reg [31:0] r_white_gain[3];
wire is_finish_cal;
always @(*) begin
if (cnt_in_pic >= IM_SIZE) is_finish_cal = 1;
else if (cnt_out_pic >= IM_SIZE) is_finish_cal = 0;
else is_finish_cal = is_finish_cal;
end
assign ram_read_addr = cnt_out_pic;
assign ram_write_addr = cnt_in_pic;
assign cnt_pixels = (is_finish_cal)
? IM_SIZE - cnt_out_pic + cnt_in_pic
: cnt_in_pic - cnt_out_pic;
assign out_ready = (!in_en && !reset && cnt_pixels < IM_SIZE) ? 1 : 0;
assign out_receive = (in_en && !reset && cnt_in_pic < IM_SIZE) ? 1 : 0;
DiffWidthSyncFIFO #(
.DATA_WIDTH (8),
.DATA_DEPTH (12),
.READ_DEPTH (4),
.WRITE_DEPTH(3)
) in_fifo (
.clk(clk),
.reset(reset),
.read_ready(ram_write_ready),
.read_en(ram_write_en),
.read_data(ram_write_data),
.write_ready(in_ready),
.write_en(in_en),
.write_data(in_data)
);
DiffWidthSyncFIFO #(
.DATA_WIDTH (8),
.DATA_DEPTH (12),
.READ_DEPTH (3),
.WRITE_DEPTH(4)
) out_fifo (
.clk(clk),
.reset(reset),
.read_ready(out_ready),
.read_en(out_en),
.read_data(out_data),
.write_ready(ram_read_ready),
.write_en(ram_read_en),
.write_data(ram_read_data)
);
SDRAM inst_RAM (
.clk(clk),
.read_en(ram_read_en),
.read_addr(ram_read_addr),
.read_data(ram_read_data),
.read_ready(ram_read_ready),
.write_en(ram_write_en),
.write_addr(ram_write_addr),
.write_data(ram_write_data),
.write_ready(ram_write_ready)
);
// calculate white gain
always @(posedge clk) begin
if (reset) begin
red_total <= 0;
green_total <= 0;
blue_total <= 0;
cnt_flame <= 0;
cnt_in_pic <= 0;
r_white_gain[0] <= white_gain[0];
r_white_gain[1] <= white_gain[1];
r_white_gain[2] <= white_gain[2];
end else begin
if (in_en && cnt_pixels < IM_SIZE) begin
red_total <= red_total + in_data[0];
green_total <= green_total + in_data[1];
blue_total <= blue_total + in_data[2];
if (cnt_in_pic < IM_SIZE) cnt_in_pic <= cnt_in_pic + 1;
else cnt_in_pic <= 0;
end else begin
end
end
end
// calculate out data
always @(posedge clk) begin
if (reset) begin
cnt_out_pic <= 0;
end else begin
if (out_ready && is_finish_cal) begin
out_en <= 1;
end else begin
out_en <= 0;
end
end
end
endmodule