switch lsp to clangd and reconstruct project
This commit is contained in:
140
src/pic_process/demosaic.cpp
Executable file
140
src/pic_process/demosaic.cpp
Executable file
@@ -0,0 +1,140 @@
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
#include "transform/bmp.hpp"
|
||||
|
||||
enum BayerPattern { GRBG, RGGB, BGGR, GBRG };
|
||||
const int IN_WIDTH = 1920;
|
||||
const int IN_HEIGHT = 1080;
|
||||
const int IN_SIZE = IN_WIDTH * IN_HEIGHT;
|
||||
const int OUT_WIDTH = 1280;
|
||||
const int OUT_HEIGHT = 720;
|
||||
const int OUT_SIZE = OUT_WIDTH * OUT_HEIGHT;
|
||||
const BayerPattern RAW_TYPE = RGGB;
|
||||
const int COLOR_DEPTH = 10;
|
||||
|
||||
// const float red_gain = 1.2f; // Adjust these values as necessary
|
||||
// const float green_gain = 0.83f;
|
||||
// const float blue_gain = 0.95f;
|
||||
|
||||
int main() {
|
||||
std::ifstream in_image;
|
||||
in_image.open("./test.RAW", std::ios::in | std::ios::binary);
|
||||
auto image = std::vector<std::vector<uint16_t>>(
|
||||
IN_HEIGHT, std::vector<uint16_t>(IN_WIDTH, 0));
|
||||
for (int y = 0; y < IN_HEIGHT; y++)
|
||||
for (int x = 0; x < IN_WIDTH; x++) {
|
||||
uint8_t buf[2] = {0};
|
||||
in_image.read((char*)buf, sizeof(buf));
|
||||
|
||||
image[y][x] = buf[0] + ((uint16_t)buf[1] << 8);
|
||||
}
|
||||
|
||||
BayerPattern raw_type = RAW_TYPE;
|
||||
uint8_t* data =
|
||||
new uint8_t[OUT_WIDTH * OUT_HEIGHT * 3]; // RGB24格式像素数据
|
||||
for (int32_t y = 0; y < OUT_HEIGHT; ++y) {
|
||||
for (int32_t x = 0; x < OUT_WIDTH; ++x) {
|
||||
int32_t index = (y * OUT_WIDTH + x) * 3;
|
||||
|
||||
uint16_t red = 0, green = 0, blue = 0;
|
||||
uint16_t data_cache[9] = {0};
|
||||
for (int i = 0; i < 3; i++)
|
||||
for (int j = 0; j < 3; j++) {
|
||||
data_cache[i * 3 + j] = image[y + i][x + j];
|
||||
}
|
||||
|
||||
// data case 0 case 1 case 2 case 3
|
||||
// 0 1 2 G R G R G R B G B G B G
|
||||
// 3 4 5 B G B G B G G R G R G R
|
||||
// 6 7 8 G R G R G R B G B G B G
|
||||
switch (raw_type) {
|
||||
case 0: // Missing B, R on G
|
||||
red = (data_cache[1] + data_cache[7]) / 2;
|
||||
blue = (data_cache[3] + data_cache[5]) / 2;
|
||||
green = data_cache[4];
|
||||
break;
|
||||
|
||||
case 1: // Missing G, R on B
|
||||
green = (data_cache[1] + data_cache[3] + data_cache[5] +
|
||||
data_cache[7]) /
|
||||
4;
|
||||
red = (data_cache[0] + data_cache[2] + data_cache[6] +
|
||||
data_cache[8]) /
|
||||
4;
|
||||
blue = data_cache[4];
|
||||
break;
|
||||
|
||||
case 2: // Missing G, B on R
|
||||
green = (data_cache[1] + data_cache[3] + data_cache[5] +
|
||||
data_cache[7]) /
|
||||
4;
|
||||
blue = (data_cache[0] + data_cache[2] + data_cache[6] +
|
||||
data_cache[8]) /
|
||||
4;
|
||||
red = data_cache[4];
|
||||
break;
|
||||
|
||||
case 3: // Missing B, R on G
|
||||
blue = (data_cache[1] + data_cache[7]) / 2;
|
||||
red = (data_cache[3] + data_cache[5]) / 2;
|
||||
green = data_cache[4];
|
||||
break;
|
||||
}
|
||||
printf(
|
||||
"x=%4d, y=%4d, red=0x%03x, green=0x%03x, blue=0x%03x, "
|
||||
"raw_type=%d\n",
|
||||
x, y, red, green, blue, raw_type);
|
||||
|
||||
switch (raw_type) {
|
||||
case 0:
|
||||
raw_type = RGGB;
|
||||
break;
|
||||
case 1:
|
||||
raw_type = GRBG;
|
||||
break;
|
||||
case 2:
|
||||
raw_type = GBRG;
|
||||
break;
|
||||
case 3:
|
||||
raw_type = BGGR;
|
||||
break;
|
||||
}
|
||||
|
||||
data[index + 0] = red >> (COLOR_DEPTH - 8); // R
|
||||
data[index + 1] = green >> (COLOR_DEPTH - 8); // G
|
||||
data[index + 2] = blue >> (COLOR_DEPTH - 8); // B
|
||||
}
|
||||
|
||||
if (y % 2) {
|
||||
raw_type = RAW_TYPE;
|
||||
} else {
|
||||
switch (RAW_TYPE) {
|
||||
case 0:
|
||||
raw_type = BGGR;
|
||||
break;
|
||||
case 1:
|
||||
raw_type = GBRG;
|
||||
break;
|
||||
case 2:
|
||||
raw_type = GRBG;
|
||||
break;
|
||||
case 3:
|
||||
raw_type = RGGB;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// for (int i = 0; i < OUT_WIDTH * OUT_HEIGHT * 3; i += 3) {
|
||||
// data[i + 0] = std::min(255, static_cast<int>(data[i + 0] * red_gain));
|
||||
// data[i + 1] = std::min(255, static_cast<int>(data[i + 1] * green_gain));
|
||||
// data[i + 2] = std::min(255, static_cast<int>(data[i + 2] * blue_gain));
|
||||
// }
|
||||
|
||||
write_bmp("test.bmp", data, OUT_WIDTH, OUT_HEIGHT);
|
||||
delete[] data;
|
||||
|
||||
return 0;
|
||||
}
|
163
src/pic_process/demosaic2.cpp
Executable file
163
src/pic_process/demosaic2.cpp
Executable file
@@ -0,0 +1,163 @@
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
#include "transform/bmp.hpp"
|
||||
|
||||
enum BayerPattern { GRBG, RGGB, BGGR, GBRG };
|
||||
const int IN_WIDTH = 1936;
|
||||
const int IN_HEIGHT = 1088;
|
||||
const int IN_SIZE = IN_WIDTH * IN_HEIGHT;
|
||||
const int OUT_WIDTH = 1280;
|
||||
const int OUT_HEIGHT = 720;
|
||||
const int OUT_SIZE = OUT_WIDTH * OUT_HEIGHT;
|
||||
const BayerPattern RAW_TYPE = GBRG;
|
||||
const int COLOR_DEPTH = 12;
|
||||
|
||||
// const float red_gain = 1.2f; // Adjust these values as necessary
|
||||
// const float green_gain = 0.5f;
|
||||
// const float blue_gain = 0.95f;
|
||||
|
||||
int main() {
|
||||
std::ifstream in_image;
|
||||
in_image.open("./test.bin", std::ios::in | std::ios::binary);
|
||||
auto image = std::vector<std::vector<uint16_t>>(
|
||||
IN_HEIGHT, std::vector<uint16_t>(IN_WIDTH, 0));
|
||||
for (int y = 0; y < IN_HEIGHT; y++)
|
||||
for (int x = 0; x < IN_WIDTH; x++) {
|
||||
uint8_t buf[2] = {0};
|
||||
in_image.read((char*)buf, sizeof(buf));
|
||||
|
||||
image[y][x] = buf[0] + ((uint16_t)buf[1] << 8);
|
||||
}
|
||||
|
||||
BayerPattern raw_type = RAW_TYPE;
|
||||
uint8_t* data =
|
||||
new uint8_t[OUT_WIDTH * OUT_HEIGHT * 3]; // RGB24格式像素数据
|
||||
for (int32_t y = 0; y < OUT_HEIGHT; ++y) {
|
||||
for (int32_t x = 0; x < OUT_WIDTH; ++x) {
|
||||
int32_t index = (y * OUT_WIDTH + x) * 3;
|
||||
|
||||
uint16_t red = 0, green = 0, blue = 0;
|
||||
uint16_t cache[25] = {0};
|
||||
for (int i = 0; i < 5; i++)
|
||||
for (int j = 0; j < 5; j++) {
|
||||
cache[i * 5 + j] = image[y + i][x + j];
|
||||
}
|
||||
// data case GRBG case RGGB case BGGR case GBRG
|
||||
// 00 01 02 03 04 G R G R G R G R G R B G B G B G B G B G
|
||||
// 05 06 07 08 09 B G B G B G B G B G G R G R G R G R G R
|
||||
// 10 11 12 13 14 G R G R G R G R G R B G B G B G B G B G
|
||||
// 15 16 17 18 19 B G B G B G B G B G G R G R G R G R G R
|
||||
// 20 21 22 23 24 G R G R G R G R G R B G B G B G B G B G
|
||||
|
||||
switch (raw_type) {
|
||||
case GRBG:
|
||||
green = cache[12];
|
||||
blue =
|
||||
(cache[7] + cache[17]) / 2 + cache[12] -
|
||||
((cache[2] + cache[6] + cache[8] + cache[12]) / 4 +
|
||||
(cache[22] + cache[16] + cache[18] + cache[12]) / 4) /
|
||||
2;
|
||||
red = (cache[11] + cache[13]) / 2 + cache[12] -
|
||||
((cache[10] + cache[6] + cache[16] + cache[12]) / 4 +
|
||||
(cache[14] + cache[8] + cache[18] + cache[12]) / 4) /
|
||||
2;
|
||||
break;
|
||||
|
||||
case RGGB:
|
||||
red = cache[12];
|
||||
green = (cache[7] + cache[11] + cache[13] + cache[17]) / 4;
|
||||
blue =
|
||||
(cache[6] + cache[8] + cache[16] + cache[18]) / 4 +
|
||||
(cache[7] + cache[11] + cache[13] + cache[17]) / 4 -
|
||||
((cache[1] + cache[5] + cache[7] + cache[11]) / 4 +
|
||||
(cache[3] + cache[7] + cache[9] + cache[13]) / 4 +
|
||||
(cache[11] + cache[15] + cache[17] + cache[18]) / 4 +
|
||||
(cache[13] + cache[17] + cache[19] + cache[23]) / 4) /
|
||||
4;
|
||||
break;
|
||||
|
||||
case BGGR:
|
||||
blue = cache[12];
|
||||
green = (cache[7] + cache[11] + cache[13] + cache[17]) / 4;
|
||||
red =
|
||||
(cache[6] + cache[8] + cache[16] + cache[18]) / 4 +
|
||||
(cache[7] + cache[11] + cache[13] + cache[17]) / 4 -
|
||||
((cache[1] + cache[5] + cache[7] + cache[11]) / 4 +
|
||||
(cache[3] + cache[7] + cache[9] + cache[13]) / 4 +
|
||||
(cache[11] + cache[15] + cache[17] + cache[18]) / 4 +
|
||||
(cache[13] + cache[17] + cache[19] + cache[23]) / 4) /
|
||||
4;
|
||||
break;
|
||||
case GBRG:
|
||||
green = cache[12];
|
||||
red =
|
||||
(cache[7] + cache[17]) / 2 + cache[12] -
|
||||
((cache[2] + cache[6] + cache[8] + cache[12]) / 4 +
|
||||
(cache[22] + cache[16] + cache[18] + cache[12]) / 4) /
|
||||
2;
|
||||
blue =
|
||||
(cache[11] + cache[13]) / 2 + cache[12] -
|
||||
((cache[10] + cache[6] + cache[16] + cache[12]) / 4 +
|
||||
(cache[14] + cache[8] + cache[18] + cache[12]) / 4) /
|
||||
2;
|
||||
break;
|
||||
}
|
||||
printf(
|
||||
"x=%4d, y=%4d, red=0x%03x, green=0x%03x, blue=0x%03x, "
|
||||
"raw_type=%d\n",
|
||||
x, y, red, green, blue, raw_type);
|
||||
|
||||
switch (raw_type) {
|
||||
case 0:
|
||||
raw_type = RGGB;
|
||||
break;
|
||||
case 1:
|
||||
raw_type = GRBG;
|
||||
break;
|
||||
case 2:
|
||||
raw_type = GBRG;
|
||||
break;
|
||||
case 3:
|
||||
raw_type = BGGR;
|
||||
break;
|
||||
}
|
||||
|
||||
data[index + 0] = red >> (COLOR_DEPTH - 8); // R
|
||||
data[index + 1] = green >> (COLOR_DEPTH - 8); // G
|
||||
data[index + 2] = blue >> (COLOR_DEPTH - 8); // B
|
||||
}
|
||||
|
||||
if (y % 2) {
|
||||
raw_type = RAW_TYPE;
|
||||
} else {
|
||||
switch (RAW_TYPE) {
|
||||
case 0:
|
||||
raw_type = BGGR;
|
||||
break;
|
||||
case 1:
|
||||
raw_type = GBRG;
|
||||
break;
|
||||
case 2:
|
||||
raw_type = GRBG;
|
||||
break;
|
||||
case 3:
|
||||
raw_type = RGGB;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// for (int i = 0; i < OUT_WIDTH * OUT_HEIGHT * 3; i += 3) {
|
||||
// data[i + 0] = std::min(255, static_cast<int>(data[i + 0] *
|
||||
// red_gain)); data[i + 1] = std::min(255, static_cast<int>(data[i + 1]
|
||||
// * green_gain)); data[i + 2] = std::min(255, static_cast<int>(data[i +
|
||||
// 2] * blue_gain));
|
||||
// }
|
||||
|
||||
write_bmp("test1.bmp", data, OUT_WIDTH, OUT_HEIGHT);
|
||||
delete[] data;
|
||||
|
||||
return 0;
|
||||
}
|
23
src/sc_main.cpp
Normal file
23
src/sc_main.cpp
Normal file
@@ -0,0 +1,23 @@
|
||||
// For std::unique_ptr
|
||||
#include <memory>
|
||||
|
||||
// SystemC global header
|
||||
#include <systemc>
|
||||
|
||||
// Include common routines
|
||||
#include <sys/stat.h> // mkdir
|
||||
#include <verilated.h>
|
||||
#include <verilated_vcd_sc.h>
|
||||
|
||||
// Include model header, generated from Verilating "isp.v"
|
||||
#include "obj_dir/Visp.h"
|
||||
#include "tb_isp.hpp"
|
||||
|
||||
// Read/Write Files
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
|
||||
int sc_main(int argc, const char** argv) {
|
||||
|
||||
return 0;
|
||||
}
|
471
src/sc_main.cpp.bak
Executable file
471
src/sc_main.cpp.bak
Executable file
@@ -0,0 +1,471 @@
|
||||
// For std::unique_ptr
|
||||
#include <memory>
|
||||
|
||||
// SystemC global header
|
||||
#include <systemc>
|
||||
|
||||
// Include common routines
|
||||
#include <sys/stat.h> // mkdir
|
||||
#include <verilated.h>
|
||||
#include <verilated_vcd_sc.h>
|
||||
|
||||
// Include model header, generated from Verilating "isp.v"
|
||||
#include "Visp.h"
|
||||
|
||||
// Handle file
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
|
||||
// math
|
||||
#include <cmath>
|
||||
|
||||
#include "bmp.hpp"
|
||||
|
||||
static const uint16_t IN_WIDTH = 1936;
|
||||
static const uint16_t IN_HEIGHT = 1088;
|
||||
static const uint32_t IN_SIZE = (IN_WIDTH * IN_HEIGHT);
|
||||
static const uint16_t OUT_WIDTH = 1920;
|
||||
static const uint16_t OUT_HEIGHT = 1080;
|
||||
static const uint32_t OUT_SIZE = (OUT_WIDTH * OUT_HEIGHT);
|
||||
static const uint32_t FLAMES = 2;
|
||||
|
||||
// color gain for correcting color
|
||||
struct color_gain {
|
||||
double red;
|
||||
double green;
|
||||
double blue;
|
||||
} color_gain{ 1.1, 0.7, 1.3 }, white_gain;
|
||||
|
||||
static const double gamma_value = 2.2;
|
||||
static const double saturation_inc = 0.5;
|
||||
static const double contrast = 1.2;
|
||||
// static const double white_radio = 0.1;
|
||||
|
||||
using namespace sc_core;
|
||||
using namespace sc_dt;
|
||||
|
||||
bool picProcess(uint32_t *image, uint16_t number);
|
||||
|
||||
SC_MODULE(TB_ISP) {
|
||||
sc_in_clk clk;
|
||||
sc_in<bool> reset;
|
||||
|
||||
sc_in<bool> in_ready;
|
||||
sc_out<bool> out_valid;
|
||||
sc_out<uint32_t> out_data[3];
|
||||
|
||||
sc_in<bool> im_clk;
|
||||
sc_in<bool> im_en;
|
||||
sc_out<bool> out_ready;
|
||||
sc_in<uint32_t> im_data;
|
||||
|
||||
sc_out<bool> is_done;
|
||||
std::unique_ptr<uint16_t[]> image = std::make_unique<uint16_t[]>(IN_SIZE);
|
||||
std::unique_ptr<uint32_t[]> out = std::make_unique<uint32_t[]>(OUT_SIZE);
|
||||
|
||||
SC_CTOR(TB_ISP) {
|
||||
SC_CTHREAD(send_Data, clk.pos());
|
||||
reset_signal_is(reset, true);
|
||||
|
||||
SC_CTHREAD(read_Data, im_clk.pos());
|
||||
}
|
||||
|
||||
void send_Data(void) {
|
||||
uint16_t pos_x = 0, pos_y = 0, cnt_flame = 0;
|
||||
bool is_finish = false;
|
||||
while (true) {
|
||||
if (in_ready.read() && !is_finish) {
|
||||
out_valid.write(1);
|
||||
|
||||
printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y,
|
||||
image[(pos_y + 0) * IN_WIDTH + pos_x]);
|
||||
printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y,
|
||||
image[(pos_y + 1) * IN_WIDTH + pos_x]);
|
||||
printf("x=%4d, y=%4d, data=0x%04x\n", pos_x, pos_y,
|
||||
image[(pos_y + 2) * IN_WIDTH + pos_x]);
|
||||
|
||||
out_data[0].write(image[(pos_y + 0) * IN_WIDTH + pos_x]);
|
||||
out_data[1].write(image[(pos_y + 1) * IN_WIDTH + pos_x]);
|
||||
out_data[2].write(image[(pos_y + 2) * IN_WIDTH + pos_x]);
|
||||
|
||||
pos_x++;
|
||||
if (pos_x >= IN_WIDTH) {
|
||||
pos_x = 0;
|
||||
pos_y++;
|
||||
}
|
||||
if (pos_y >= IN_HEIGHT - 2) {
|
||||
pos_y = 0;
|
||||
cnt_flame++;
|
||||
}
|
||||
if (cnt_flame >= FLAMES) {
|
||||
is_finish = true;
|
||||
}
|
||||
}
|
||||
else {
|
||||
out_valid.write(0);
|
||||
}
|
||||
|
||||
wait();
|
||||
}
|
||||
}
|
||||
|
||||
void read_Data(void) {
|
||||
is_done.write(0);
|
||||
uint16_t pos_x = 0, pos_y = 0, cnt_flame = 0;
|
||||
uint32_t last_data = 0, cnt = 0;
|
||||
bool is_finish = false;
|
||||
while (true) {
|
||||
|
||||
// when not finish, read data
|
||||
if (!is_finish) {
|
||||
out_ready.write(true);
|
||||
if (im_en.read()) {
|
||||
out[pos_y * OUT_WIDTH + pos_x] = im_data.read();
|
||||
|
||||
pos_x++;
|
||||
if (pos_x >= IN_WIDTH) {
|
||||
pos_x = 0;
|
||||
pos_y++;
|
||||
}
|
||||
if (pos_y >= IN_HEIGHT - 2) {
|
||||
pos_y = 0;
|
||||
cnt_flame++;
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
out_ready.write(false);
|
||||
}
|
||||
|
||||
// when data didn't change some time, it end
|
||||
if (last_data == im_data.read() && is_finish) {
|
||||
cnt++;
|
||||
if (cnt >= 100000L) {
|
||||
is_done.write(1);
|
||||
printf("x=%d, y=%d\n", pos_x, pos_y);
|
||||
}
|
||||
}
|
||||
else {
|
||||
cnt = 0;
|
||||
}
|
||||
last_data = im_data.read();
|
||||
|
||||
wait();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
bool picProcess(uint32_t *image, uint16_t number) {
|
||||
uint8_t *data =
|
||||
new uint8_t[OUT_WIDTH * OUT_HEIGHT * 3]; // RGB24格式像素数据
|
||||
|
||||
// software algorthms analyze
|
||||
uint32_t red_total = 0, green_total = 0, blue_total = 0;
|
||||
uint8_t red_max = 0, green_max = 0, blue_max = 0;
|
||||
for (int32_t y = 0; y < OUT_HEIGHT; ++y) {
|
||||
for (int32_t x = 0; x < OUT_WIDTH; ++x) {
|
||||
int32_t index = (y * OUT_WIDTH + x) * 3;
|
||||
|
||||
uint8_t red = (image[y * OUT_WIDTH + x] & 0x00ff0000) >> 16;
|
||||
uint8_t green = (image[y * OUT_WIDTH + x] & 0x0000ff00) >> 8;
|
||||
uint8_t blue = (image[y * OUT_WIDTH + x] & 0x000000ff);
|
||||
|
||||
// Adjust gamma line
|
||||
// red = 255 * std::pow(red / 255.0, 1 / gamma_value);
|
||||
// green = 255 * std::pow(green / 255.0, 1 / gamma_value);
|
||||
// blue = 255 * std::pow(blue / 255.0, 1 / gamma_value);
|
||||
|
||||
// Calculate white balance data
|
||||
// red_max = std::max(red_max, red);
|
||||
// green_max = std::max(green_max, green);
|
||||
// blue_max = std::max(blue_max, blue);
|
||||
// red_total += red;
|
||||
// green_total += green;
|
||||
// blue_total += blue;
|
||||
|
||||
// Adjust vibrance
|
||||
// uint8_t max = std::max({red, green, blue});
|
||||
// uint8_t min = std::min({red, green, blue});
|
||||
// double delta = (max - min) / 255.0;
|
||||
// double value = (max + min) / 255.0;
|
||||
// if (delta != 0) {
|
||||
// double L = value / 2.0;
|
||||
// // double S = (L <= 0.5) ? delta / value : delta / (2 -
|
||||
// value); double S = delta / max; double alpha = 0.0; if
|
||||
// (saturation_inc >= 0) {
|
||||
// if ((saturation_inc + S) >= 1)
|
||||
// alpha = S;
|
||||
// else
|
||||
// alpha = 1 - saturation_inc;
|
||||
// alpha = 1 / alpha - 1;
|
||||
// red = static_cast<uchar>(red + (red - L * 255) * alpha);
|
||||
// green =
|
||||
// static_cast<uchar>(green + (green - L * 255) *
|
||||
// alpha);
|
||||
// blue = static_cast<uchar>(blue + (blue - L * 255) *
|
||||
// alpha);
|
||||
// } else {
|
||||
// alpha = saturation_inc;
|
||||
// red = static_cast<uchar>(L * 255 +
|
||||
// (red - L * 255) * (1 + alpha));
|
||||
// green = static_cast<uchar>(L * 255 +
|
||||
// (green - L * 255) * (1 +
|
||||
// alpha));
|
||||
// blue = static_cast<uchar>(L * 255 +
|
||||
// (blue - L * 255) * (1 +
|
||||
// alpha));
|
||||
// }
|
||||
// }
|
||||
|
||||
// Contrast enhancement
|
||||
// red = static_cast<uchar>(contrast * (red - 128) + 128);
|
||||
// green = static_cast<uchar>(contrast * (green - 128) + 128);
|
||||
// blue = static_cast<uchar>(contrast * (blue - 128) + 128);
|
||||
|
||||
|
||||
// save data
|
||||
data[index + 0] = red; // R
|
||||
data[index + 1] = green; // G
|
||||
data[index + 2] = blue; // B
|
||||
}
|
||||
}
|
||||
|
||||
// Adjust White Balance : Grey World Color Correction
|
||||
// double K = static_cast<double>(red_total + green_total + blue_total) /
|
||||
// (3 * OUT_SIZE);
|
||||
// white_gain.red = static_cast<double>(K * OUT_SIZE) / red_total;
|
||||
// white_gain.green = static_cast<double>(K * OUT_SIZE) / green_total;
|
||||
// white_gain.blue = static_cast<double>(K * OUT_SIZE) / blue_total;
|
||||
// printf("Gain: red = %f, green = %f, blue = %f", white_gain.red,
|
||||
// white_gain.green, white_gain.blue);
|
||||
// for (int32_t y = 0; y < OUT_HEIGHT; ++y) {
|
||||
// for (int32_t x = 0; x < OUT_WIDTH; ++x) {
|
||||
// int32_t index = (y * OUT_WIDTH + x) * 3;
|
||||
|
||||
// data[index + 0] =
|
||||
// static_cast<uint8_t>(white_gain.red * data[index + 0]);
|
||||
// data[index + 1] =
|
||||
// static_cast<uint8_t>(white_gain.green * data[index + 1]);
|
||||
// data[index + 2] =
|
||||
// static_cast<uint8_t>(white_gain.blue * data[index + 2]);
|
||||
// }
|
||||
// }
|
||||
|
||||
// save to bmp
|
||||
std::cout << "Ready to save raw RGB image" << std::endl;
|
||||
char file_name[64] = { 0 };
|
||||
snprintf(file_name, sizeof(file_name), "pic_%d.bmp", number);
|
||||
write_bmp(file_name, data, OUT_WIDTH, OUT_HEIGHT);
|
||||
delete[] data;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int sc_main(int argc, char *argv[]) {
|
||||
std::cout << "Get into sc_main" << std::endl;
|
||||
// Open image
|
||||
std::ifstream in_image;
|
||||
in_image.open("./transform/test.bin", std::ios::in | std::ios::binary);
|
||||
if (!in_image.is_open()) {
|
||||
std::cout << "Open image fail" << std::endl;
|
||||
exit(0);
|
||||
}
|
||||
else {
|
||||
std::cout << "Ready to sim" << std::endl;
|
||||
}
|
||||
|
||||
// Read image
|
||||
auto buf = std::make_unique<uint8_t[]>(2 * IN_SIZE);
|
||||
in_image.read((char *)buf.get(), IN_SIZE * 2);
|
||||
in_image.close();
|
||||
// Reshape data
|
||||
auto image = std::make_unique<uint16_t[]>(IN_SIZE);
|
||||
uint32_t i = 0;
|
||||
for (int y = 0; y < IN_HEIGHT; y++) {
|
||||
for (int x = 0; x < IN_WIDTH; x++) {
|
||||
image[y * IN_WIDTH + x] =
|
||||
(uint16_t)buf[i] + ((uint16_t)buf[i + 1] << 8);
|
||||
i += 2;
|
||||
}
|
||||
}
|
||||
std::cout << "Finish Reading data" << std::endl;
|
||||
|
||||
// This is a more complicated example, please also see the simpler
|
||||
// examples/make_hello_c.
|
||||
|
||||
// Create logs/ directory in case we have traces to put under it
|
||||
Verilated::mkdir("logs");
|
||||
|
||||
// Set debug level, 0 is off, 9 is highest presently used
|
||||
// May be overridden by commandArgs argument parsing
|
||||
Verilated::debug(0);
|
||||
|
||||
// Randomization reset policy
|
||||
// May be overridden by commandArgs argument parsing
|
||||
Verilated::randReset(2);
|
||||
|
||||
// Before any evaluation, need to know to calculate those signals only used
|
||||
// for tracing
|
||||
Verilated::traceEverOn(true);
|
||||
|
||||
// Pass arguments so Verilated code can see them, e.g. $value$plusargs
|
||||
// This needs to be called before you create any model
|
||||
Verilated::commandArgs(argc, argv);
|
||||
|
||||
// General logfile
|
||||
std::ios::sync_with_stdio();
|
||||
|
||||
// Define clocks
|
||||
sc_clock clk{ "clk", 10, SC_NS, 0.5, 3, SC_NS, true };
|
||||
// Define interconnect
|
||||
sc_signal<bool> reset;
|
||||
|
||||
sc_signal<bool> in_valid;
|
||||
sc_signal<bool> in_ready;
|
||||
sc_signal<uint32_t> in_data[3];
|
||||
|
||||
sc_signal<bool> out_clk;
|
||||
sc_signal<bool> out_valid;
|
||||
sc_signal<bool> out_ready;
|
||||
sc_signal<bool> out_receive;
|
||||
sc_signal<uint32_t> out_data;
|
||||
|
||||
sc_signal<bool> blender_enable;
|
||||
sc_signal<uint32_t> gain_red;
|
||||
sc_signal<uint32_t> gain_green;
|
||||
sc_signal<uint32_t> gain_blue;
|
||||
|
||||
sc_signal<bool> gamma_enable;
|
||||
sc_signal<uint32_t> gamma_inverse;
|
||||
sc_signal<uint32_t> gamma_table[256];
|
||||
|
||||
sc_signal<uint32_t> white_gain[3];
|
||||
sc_signal<uint32_t> flame_rate;
|
||||
sc_signal<bool> white_enable;
|
||||
|
||||
sc_signal<bool> saturation_enable;
|
||||
sc_signal<uint32_t> saturation_increase;
|
||||
|
||||
sc_signal<bool> flag_done;
|
||||
|
||||
// Construct the Verilated model, from inside Visp.h
|
||||
// Using unique_ptr is similar to "Visp* isp = new Visp" then deleting at the end
|
||||
const std::unique_ptr<Visp> isp{ new Visp{"isp"} };
|
||||
// Attach Visp's signals to this upper model
|
||||
isp->clk(clk);
|
||||
isp->reset(reset);
|
||||
isp->in_valid(in_valid);
|
||||
isp->in_ready(in_ready);
|
||||
isp->in_data[0](in_data[0]);
|
||||
isp->in_data[1](in_data[1]);
|
||||
isp->in_data[2](in_data[2]);
|
||||
isp->out_valid(out_valid);
|
||||
isp->out_ready(out_ready);
|
||||
isp->out_data(out_data);
|
||||
|
||||
isp->gain_red(gain_red);
|
||||
isp->gain_green(gain_green);
|
||||
isp->gain_blue(gain_blue);
|
||||
isp->blender_enable(blender_enable);
|
||||
|
||||
// isp->gamma_enable(gamma_enable);
|
||||
// isp->gamma_inverse(gamma_inverse);
|
||||
|
||||
// isp->white_enable(white_enable);
|
||||
// isp->flame_rate(flame_rate);
|
||||
// isp->white_gain[0](white_gain[0]);
|
||||
// isp->white_gain[1](white_gain[1]);
|
||||
// isp->white_gain[2](white_gain[2]);
|
||||
|
||||
// isp->saturation_enable(saturation_enable);
|
||||
// isp->saturation_inc(saturation_increase);
|
||||
|
||||
// blender_enable = true; // enable color correction
|
||||
// gain_red = static_cast<uint32_t>(color_gain.red * std::pow(2, 8));
|
||||
// gain_green = static_cast<uint32_t>(color_gain.green * std::pow(2, 8));
|
||||
// gain_blue = static_cast<uint32_t>(color_gain.blue * std::pow(2, 8));
|
||||
|
||||
// gamma_enable = true;
|
||||
// gamma_inverse = static_cast<uint32_t>((1.0 / gamma_value) * std::pow(2, 8));
|
||||
// for (int i = 0; i < 256; i++) {
|
||||
// // calculate gamma table
|
||||
// isp->gamma_table[i](gamma_table[i]);
|
||||
// gamma_table[i] = static_cast<uint32_t>(255 * pow(i / 255.0, 1.0 / gamma_value));
|
||||
// }
|
||||
|
||||
// white_enable = true;
|
||||
// flame_rate = 0;
|
||||
// white_gain[0] = 255;
|
||||
// white_gain[1] = 255;
|
||||
// white_gain[2] = 255;
|
||||
|
||||
// saturation_enable = true;
|
||||
// saturation_increase =
|
||||
// (int32_t)((saturation_inc >= 0) ? (saturation_inc * std::pow(2, 8))
|
||||
// : (saturation_inc * std::pow(2, 8)));
|
||||
|
||||
// Construct testbench module
|
||||
TB_ISP tb_isp("tb_isp");
|
||||
tb_isp.clk(clk);
|
||||
tb_isp.reset(reset);
|
||||
tb_isp.in_ready(out_ready);
|
||||
tb_isp.out_valid(in_valid);
|
||||
tb_isp.out_ready(in_ready);
|
||||
// tb_isp.out_receceive(in_receive);
|
||||
tb_isp.out_data[0](in_data[0]);
|
||||
tb_isp.out_data[1](in_data[1]);
|
||||
tb_isp.out_data[2](in_data[2]);
|
||||
tb_isp.im_clk(out_clk);
|
||||
tb_isp.im_en(out_valid);
|
||||
tb_isp.im_data(out_data);
|
||||
tb_isp.is_done(flag_done);
|
||||
tb_isp.image = move(image);
|
||||
|
||||
// You must do one evaluation before enabling waves, in order to allow
|
||||
// SystemC to interconnect everything for testing.
|
||||
sc_start(SC_ZERO_TIME);
|
||||
|
||||
// If verilator was invoked with --trace argument,
|
||||
// and if at run time passed the +trace argument, turn on tracing
|
||||
VerilatedVcdSc *tfp = nullptr;
|
||||
const char *flag = Verilated::commandArgsPlusMatch("trace");
|
||||
if (flag && 0 == std::strcmp(flag, "+trace")) {
|
||||
std::cout << "Enabling waves into logs/vlt_dump.vcd...\n";
|
||||
tfp = new VerilatedVcdSc;
|
||||
isp->trace(tfp, 99); // Trace 99 levels of hierarchy
|
||||
Verilated::mkdir("logs");
|
||||
tfp->open("logs/vlt_dump.vcd");
|
||||
}
|
||||
|
||||
// Simulate until $finish
|
||||
while (!Verilated::gotFinish()) {
|
||||
// Flush the wave files each cycle so we can immediately see the output
|
||||
// Don't do this in "real" programs, do it in an abort() handler instead
|
||||
if (tfp) tfp->flush();
|
||||
|
||||
// Apply inputs
|
||||
if (sc_time_stamp() < sc_time(10, SC_NS)) {
|
||||
reset.write(1); // Assert reset
|
||||
}
|
||||
else {
|
||||
reset.write(0); // Deassert reset
|
||||
}
|
||||
|
||||
if (flag_done.read()) break;
|
||||
|
||||
// Simulate 1ns
|
||||
sc_start(1, SC_NS);
|
||||
}
|
||||
|
||||
// Final model cleanup
|
||||
isp->final();
|
||||
|
||||
// Close trace if opened
|
||||
if (tfp) {
|
||||
tfp->close();
|
||||
tfp = nullptr;
|
||||
}
|
||||
|
||||
// Return good completion status
|
||||
return 0;
|
||||
}
|
0
src/tb_isp.cpp
Normal file
0
src/tb_isp.cpp
Normal file
24
src/tb_isp.hpp
Normal file
24
src/tb_isp.hpp
Normal file
@@ -0,0 +1,24 @@
|
||||
#ifndef __TB_ISP_HPP__
|
||||
#define __TB_ISP_HPP__
|
||||
|
||||
#include "sysc/communication/sc_signal_ports.h"
|
||||
#include <systemc>
|
||||
|
||||
namespace testbench {
|
||||
using namespace sc_core;
|
||||
using namespace sc_dt;
|
||||
|
||||
SC_MODULE(TB_ISP) {
|
||||
sc_in_clk clk;
|
||||
sc_in<bool> rst;
|
||||
|
||||
sc_in<bool> in_ready;
|
||||
sc_out<bool> out_valid;
|
||||
sc_out<sc_uint<8>> out_data[3];
|
||||
|
||||
sc_in<uint32_t> in_data;
|
||||
};
|
||||
|
||||
} // namespace testbench
|
||||
|
||||
#endif
|
46
src/transform/bmp.cpp
Executable file
46
src/transform/bmp.cpp
Executable file
@@ -0,0 +1,46 @@
|
||||
#include "bmp.hpp"
|
||||
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
|
||||
// 将RGB24格式像素数据封装为BMP图像
|
||||
bool write_bmp(const char* filename, uint8_t* data, int32_t width,
|
||||
int32_t height) {
|
||||
BMPFileHeader file_header = {0};
|
||||
BMPInfoHeader info_header = {0};
|
||||
std::ofstream ofs(filename, std::ios::binary);
|
||||
if (!ofs) {
|
||||
std::cerr << "Failed to create file: " << filename << std::endl;
|
||||
return false;
|
||||
}
|
||||
// BMP文件头
|
||||
file_header.type = 0x4D42; // BM
|
||||
file_header.size =
|
||||
sizeof(BMPFileHeader) + sizeof(BMPInfoHeader) + width * height * 3;
|
||||
file_header.offset = sizeof(BMPFileHeader) + sizeof(BMPInfoHeader);
|
||||
ofs.write(reinterpret_cast<char*>(&file_header), sizeof(file_header));
|
||||
|
||||
// BMP位图信息头
|
||||
info_header.size = sizeof(BMPInfoHeader);
|
||||
info_header.width = width;
|
||||
info_header.height = height;
|
||||
info_header.planes = 1;
|
||||
info_header.bit_count = 24;
|
||||
info_header.size_image = width * height * 3;
|
||||
ofs.write(reinterpret_cast<char*>(&info_header), sizeof(info_header));
|
||||
|
||||
// 像素数据
|
||||
int32_t row_size = (((width + 1) * 3) / 4) * 4; // 行字节数,必须为4的倍数
|
||||
uint8_t* row_data = new uint8_t[row_size];
|
||||
for (int32_t y = height - 1; y >= 0; --y) { // BMP图像的行是从下往上存储的
|
||||
for (int32_t x = 0; x < width; ++x) {
|
||||
row_data[x * 3 + 2] = data[(y * width + x) * 3 + 0]; // B
|
||||
row_data[x * 3 + 1] = data[(y * width + x) * 3 + 1]; // G
|
||||
row_data[x * 3 + 0] = data[(y * width + x) * 3 + 2]; // R
|
||||
}
|
||||
ofs.write(reinterpret_cast<char*>(row_data), row_size);
|
||||
}
|
||||
delete[] row_data;
|
||||
ofs.close();
|
||||
return true;
|
||||
}
|
35
src/transform/bmp.hpp
Executable file
35
src/transform/bmp.hpp
Executable file
@@ -0,0 +1,35 @@
|
||||
#ifndef __BMP_H__
|
||||
#define __BMP_H__
|
||||
|
||||
#include <stdint.h>
|
||||
#pragma pack(push, 1) // 1字节对齐
|
||||
|
||||
// BMP文件头结构体
|
||||
struct BMPFileHeader {
|
||||
uint16_t type; // 文件类型,必须为"BM"
|
||||
uint32_t size; // 文件大小,单位为字节
|
||||
uint16_t reserved1; // 保留字段,必须为0
|
||||
uint16_t reserved2; // 保留字段,必须为0
|
||||
uint32_t offset; // 像素数据起始位置,单位为字节
|
||||
};
|
||||
|
||||
// BMP位图信息头结构体
|
||||
struct BMPInfoHeader {
|
||||
uint32_t size; // 信息头大小,必须为40
|
||||
int32_t width; // 图像宽度,单位为像素
|
||||
int32_t height; // 图像高度,单位为像素
|
||||
uint16_t planes; // 颜色平面数,必须为1
|
||||
uint16_t bit_count; // 每个像素的位数,必须为24
|
||||
uint32_t compression; // 压缩方式,必须为0
|
||||
uint32_t size_image; // 像素数据大小,单位为字节
|
||||
int32_t x_pels_per_meter; // X方向像素数/米
|
||||
int32_t y_pels_per_meter; // Y方向像素数/米
|
||||
uint32_t clr_used; // 使用的颜色数,必须为0
|
||||
uint32_t clr_important; // 重要的颜色数,必须为0
|
||||
};
|
||||
|
||||
#pragma pack(pop)
|
||||
|
||||
bool write_bmp(const char* filename, uint8_t* data, int32_t width, int32_t height);
|
||||
|
||||
#endif
|
BIN
src/transform/im.tif
Executable file
BIN
src/transform/im.tif
Executable file
Binary file not shown.
23
src/transform/raw_cut.py
Executable file
23
src/transform/raw_cut.py
Executable file
@@ -0,0 +1,23 @@
|
||||
import imageio
|
||||
import numpy as np
|
||||
|
||||
cut_width = 1936
|
||||
cut_height = 1088
|
||||
|
||||
if __name__ == '__main__':
|
||||
# txt = open('./test.dat', 'w')
|
||||
binfile = open('./test.bin', "wb")
|
||||
image = imageio.imread_v2('./im.tif')
|
||||
|
||||
print(image.shape)
|
||||
cut = image[0:cut_height, 0:cut_width]
|
||||
print(cut.shape)
|
||||
cut = np.array(cut, dtype=np.int16)
|
||||
|
||||
for data in list(cut.flatten()):
|
||||
# txt.write('%02x\n%02x\n' % (data & 0x00ff, (data & 0xff00) >> 4))
|
||||
binfile.write(data)
|
||||
# txt.close()
|
||||
binfile.close()
|
||||
|
||||
# imageio.imsave('./test.tif', cut)
|
Reference in New Issue
Block a user