209 lines
6.2 KiB
C++
209 lines
6.2 KiB
C++
// For std::unique_ptr
|
|
#include <memory>
|
|
|
|
// SystemC global header
|
|
#include <systemc>
|
|
|
|
// Include common routines
|
|
#include <sys/stat.h> // mkdir
|
|
#include <verilated.h>
|
|
#include <verilated_vcd_sc.h>
|
|
|
|
// Include model header, generated from Verilating "demo.v"
|
|
#include "Vdemosaic2.h"
|
|
|
|
// Handle file
|
|
#include <fstream>
|
|
#include <iostream>
|
|
|
|
#define IM_WIDTH 512
|
|
#define IM_HEIGHT 256
|
|
#define IM_SIZE (IM_WIDTH * IM_HEIGHT)
|
|
|
|
using namespace std;
|
|
using namespace sc_core;
|
|
using namespace sc_dt;
|
|
|
|
int sc_main(int argc, char* argv[]) {
|
|
// Open image
|
|
ifstream in_image;
|
|
ofstream out_image;
|
|
in_image.open("./transform/test.bin", ios::in | ios::binary);
|
|
out_image.open("./transform/out.bin", ios::out | ios::binary);
|
|
if (!in_image.is_open()) {
|
|
cout << "Open image fail" << endl;
|
|
exit(0);
|
|
} else {
|
|
cout << "Ready to sim" << endl;
|
|
}
|
|
|
|
// Read image
|
|
uint8_t buf[IM_SIZE * 2] = {0};
|
|
in_image.read((char*)buf, IM_SIZE * 2);
|
|
// for (uint32_t i = 0; i < IM_SIZE * 2; i++)
|
|
// printf("0x%02x\t", buf[i]);
|
|
in_image.close();
|
|
// Reshape data
|
|
uint16_t image[IM_HEIGHT][IM_WIDTH] = {0};
|
|
uint32_t i = 0;
|
|
for (int y = 0; y < IM_HEIGHT; y++) {
|
|
for (int x = 0; x < IM_WIDTH; x++) {
|
|
image[y][x] = (uint16_t)buf[i] + ((uint16_t)buf[i + 1] << 8);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
// This is a more complicated example, please also see the simpler
|
|
// examples/make_hello_c.
|
|
|
|
// Create logs/ directory in case we have traces to put under it
|
|
Verilated::mkdir("logs");
|
|
|
|
// Set debug level, 0 is off, 9 is highest presently used
|
|
// May be overridden by commandArgs argument parsing
|
|
Verilated::debug(0);
|
|
|
|
// Randomization reset policy
|
|
// May be overridden by commandArgs argument parsing
|
|
Verilated::randReset(2);
|
|
|
|
// Before any evaluation, need to know to calculate those signals only used
|
|
// for tracing
|
|
Verilated::traceEverOn(true);
|
|
|
|
// Pass arguments so Verilated code can see them, e.g. $value$plusargs
|
|
// This needs to be called before you create any model
|
|
Verilated::commandArgs(argc, argv);
|
|
|
|
// General logfile
|
|
std::ios::sync_with_stdio();
|
|
|
|
// Define clocks
|
|
sc_clock clk{"clk", 10, SC_NS, 0.5, 3, SC_NS, true};
|
|
|
|
// Define interconnect
|
|
sc_signal<bool> reset;
|
|
|
|
sc_signal<bool> in_en;
|
|
sc_signal<bool> in_que;
|
|
sc_signal<uint32_t> data_in[3];
|
|
|
|
sc_signal<bool> out_en;
|
|
sc_signal<uint32_t> out_r, out_g, out_b;
|
|
|
|
// Construct the Verilated model, from inside Vtop.h
|
|
// Using unique_ptr is similar to "Vtop* top = new Vtop" then deleting at
|
|
// end
|
|
const std::unique_ptr<Vdemosaic2> demo{new Vdemosaic2{"demo"}};
|
|
|
|
// Attach Vtop's signals to this upper model
|
|
demo->clk(clk);
|
|
demo->reset(reset);
|
|
demo->data_en(in_en);
|
|
demo->data_que(in_que);
|
|
demo->data_in[0](data_in[0]);
|
|
demo->data_in[1](data_in[1]);
|
|
demo->data_in[2](data_in[2]);
|
|
demo->out_en(out_en);
|
|
demo->out_r(out_r);
|
|
demo->out_g(out_g);
|
|
demo->out_b(out_b);
|
|
|
|
// You must do one evaluation before enabling waves, in order to allow
|
|
// SystemC to interconnect everything for testing.
|
|
sc_start(SC_ZERO_TIME);
|
|
|
|
// If verilator was invoked with --trace argument,
|
|
// and if at run time passed the +trace argument, turn on tracing
|
|
VerilatedVcdSc* tfp = nullptr;
|
|
const char* flag = Verilated::commandArgsPlusMatch("trace");
|
|
if (flag && 0 == std::strcmp(flag, "+trace")) {
|
|
std::cout << "Enabling waves into logs/vlt_dump.vcd...\n";
|
|
tfp = new VerilatedVcdSc;
|
|
demo->trace(tfp, 99); // Trace 99 levels of hierarchy
|
|
Verilated::mkdir("logs");
|
|
tfp->open("logs/vlt_dump.vcd");
|
|
}
|
|
|
|
// Simulate until $finish
|
|
bool flag_posedge = 0;
|
|
bool clk_last = 0, clk_now = 0;
|
|
uint16_t pos_x = 0, pos_y = 0;
|
|
uint16_t out[IM_SIZE] = {0};
|
|
uint32_t out_head = 0;
|
|
while (!Verilated::gotFinish()) {
|
|
// Flush the wave files each cycle so we can immediately see the output
|
|
// Don't do this in "real" programs, do it in an abort() handler instead
|
|
if (tfp) tfp->flush();
|
|
|
|
// Apply inputs
|
|
if (sc_time_stamp() < sc_time(10, SC_NS)) {
|
|
reset.write(1); // Assert reset
|
|
} else {
|
|
reset.write(0); // Deassert reset
|
|
}
|
|
|
|
// Clock posedge generatre
|
|
clk_now = clk.read();
|
|
if (!clk_last && clk_now)
|
|
flag_posedge = 1;
|
|
clk_last = clk_now;
|
|
|
|
// Send image data and Read RGB image data
|
|
if (sc_time_stamp() > sc_time(10, SC_NS) && flag_posedge) {
|
|
flag_posedge = 0;
|
|
// Send image data to demosaic
|
|
if (in_que.read() && pos_y < IM_HEIGHT - 2) {
|
|
in_en.write(1);
|
|
|
|
printf("x=%3d, y=%3d, data=0x%04x\t", pos_x, pos_y, image[pos_y + 0][pos_x]);
|
|
printf("x=%3d, y=%3d, data=0x%04x\t", pos_x, pos_y, image[pos_y + 1][pos_x]);
|
|
printf("x=%3d, y=%3d, data=0x%04x\n", pos_x, pos_y, image[pos_y + 2][pos_x]);
|
|
|
|
data_in[0].write(image[pos_y + 0][pos_x++]);
|
|
data_in[1].write(image[pos_y + 1][pos_x++]);
|
|
data_in[2].write(image[pos_y + 2][pos_x++]);
|
|
|
|
if (pos_x >= IM_WIDTH) {
|
|
pos_x = 0;
|
|
pos_y++;
|
|
}
|
|
} else {
|
|
in_en.write(0);
|
|
}
|
|
|
|
// Read image data
|
|
if (out_en.read()) {
|
|
out[out_head++] = ((uint8_t)(out_r.read() * 5 / 12) << 10) +
|
|
((uint8_t)(out_g.read() * 5 / 12) << 5) +
|
|
((uint8_t)(out_b.read() * 5 / 12) << 0);
|
|
}
|
|
}
|
|
|
|
if (sc_time_stamp() > sc_time(2600, SC_US))
|
|
break;
|
|
// Simulate 1ns
|
|
sc_start(1, SC_NS);
|
|
}
|
|
|
|
// Final model cleanup
|
|
demo->final();
|
|
|
|
// Close trace if opened
|
|
if (tfp) {
|
|
tfp->close();
|
|
tfp = nullptr;
|
|
}
|
|
|
|
// Save final output image
|
|
for (uint32_t i = 0; i < IM_SIZE; i++) {
|
|
buf[i * 2] = (out[i] & 0xffff0000) >> 16;
|
|
buf[i * 2 + 1] = (out[i] & 0x0000ffff);
|
|
}
|
|
out_image.write((const char*)buf, 2 * IM_SIZE);
|
|
out_image.close();
|
|
|
|
// Return good completion status
|
|
return 0;
|
|
}
|