477 lines
15 KiB
C++
477 lines
15 KiB
C++
// For std::unique_ptr
|
|
#include <memory>
|
|
|
|
// SystemC global header
|
|
#include <systemc>
|
|
|
|
// Include common routines
|
|
#include <sys/stat.h> // mkdir
|
|
#include <verilated.h>
|
|
#include <verilated_vcd_sc.h>
|
|
|
|
// Include model header, generated from Verilating "isp.v"
|
|
#include "Visp.h"
|
|
|
|
// Handle file
|
|
#include <fstream>
|
|
#include <iostream>
|
|
|
|
// math
|
|
#include <cmath>
|
|
|
|
#include "bmp.hpp"
|
|
|
|
static const uint16_t IN_WIDTH = 1936;
|
|
static const uint16_t IN_HEIGHT = 1088;
|
|
static const uint32_t IN_SIZE = (IN_WIDTH * IN_HEIGHT);
|
|
static const uint16_t OUT_WIDTH = 1920;
|
|
static const uint16_t OUT_HEIGHT = 1080;
|
|
static const uint32_t OUT_SIZE = (OUT_WIDTH * OUT_HEIGHT);
|
|
static const uint32_t FLAMES = 2;
|
|
|
|
// color gain for correcting color
|
|
struct color_gain {
|
|
double red;
|
|
double green;
|
|
double blue;
|
|
} color_gain{1.1, 0.7, 1.3}, white_gain;
|
|
|
|
static const double gamma_value = 2.2;
|
|
static const double saturation_inc = 0.5;
|
|
static const double contrast = 1.2;
|
|
// static const double white_radio = 0.1;
|
|
|
|
using namespace sc_core;
|
|
using namespace sc_dt;
|
|
|
|
bool picProcess(uint32_t* image, uint16_t number);
|
|
|
|
SC_MODULE(TB_ISP) {
|
|
sc_in_clk clk;
|
|
sc_in<bool> reset;
|
|
|
|
sc_in<bool> in_ready;
|
|
sc_in<bool> in_receive;
|
|
sc_out<bool> out_en;
|
|
sc_out<uint32_t> out_data[3];
|
|
|
|
sc_in<bool> im_clk;
|
|
sc_in<bool> im_en;
|
|
sc_out<bool> out_ready;
|
|
// sc_out<bool> out_receceive;
|
|
sc_in<uint32_t> im_data;
|
|
|
|
sc_out<bool> is_done;
|
|
std::unique_ptr<uint16_t[]> image = std::make_unique<uint16_t[]>(IN_SIZE);
|
|
std::unique_ptr<uint32_t[]> out = std::make_unique<uint32_t[]>(OUT_SIZE);
|
|
|
|
SC_CTOR(TB_ISP) {
|
|
SC_CTHREAD(send_Data, clk.pos());
|
|
reset_signal_is(reset, true);
|
|
|
|
SC_CTHREAD(read_Data, im_clk.pos());
|
|
}
|
|
|
|
void send_Data(void) {
|
|
uint16_t pos_x = 0, pos_y = 0, cnt_flame = 0;
|
|
bool is_finish = false;
|
|
while (true) {
|
|
if (in_ready.read() && !is_finish) {
|
|
out_en.write(1);
|
|
|
|
printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y,
|
|
image[(pos_y + 0) * IN_WIDTH + pos_x]);
|
|
printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y,
|
|
image[(pos_y + 1) * IN_WIDTH + pos_x]);
|
|
printf("x=%4d, y=%4d, data=0x%04x\n", pos_x, pos_y,
|
|
image[(pos_y + 2) * IN_WIDTH + pos_x]);
|
|
|
|
out_data[0].write(image[(pos_y + 0) * IN_WIDTH + pos_x]);
|
|
out_data[1].write(image[(pos_y + 1) * IN_WIDTH + pos_x]);
|
|
out_data[2].write(image[(pos_y + 2) * IN_WIDTH + pos_x]);
|
|
|
|
pos_x++;
|
|
if (pos_x >= IN_WIDTH) {
|
|
pos_x = 0;
|
|
pos_y++;
|
|
}
|
|
if (pos_y >= IN_HEIGHT - 2) {
|
|
pos_y = 0;
|
|
cnt_flame++;
|
|
}
|
|
if (cnt_flame >= FLAMES) {
|
|
is_finish = true;
|
|
}
|
|
} else {
|
|
out_en.write(0);
|
|
}
|
|
|
|
wait();
|
|
}
|
|
}
|
|
|
|
void read_Data(void) {
|
|
is_done.write(0);
|
|
uint16_t pos_x = 0, pos_y = 0, cnt_flame = 0;
|
|
uint32_t last_data = 0, cnt = 0;
|
|
bool is_finish = false;
|
|
while (true) {
|
|
if (im_en.read() && !is_finish) {
|
|
out_ready.write(false);
|
|
// out_receceive.write(true);
|
|
|
|
out[pos_y * OUT_WIDTH + pos_x] = im_data.read();
|
|
|
|
if (pos_x++ >= OUT_WIDTH) {
|
|
pos_x = 0;
|
|
pos_y++;
|
|
}
|
|
if (pos_y >= OUT_HEIGHT) {
|
|
pos_y = 0;
|
|
picProcess(out.get(), cnt_flame);
|
|
cnt_flame++;
|
|
}
|
|
if (cnt_flame >= FLAMES) {
|
|
is_finish = true;
|
|
}
|
|
} else {
|
|
out_ready.write(true);
|
|
// out_receceive.write(false);
|
|
}
|
|
|
|
// when data didn't change some time, it end
|
|
if (last_data == im_data.read() && is_finish) {
|
|
cnt++;
|
|
if (cnt >= 100000L) {
|
|
is_done.write(1);
|
|
printf("x=%d, y=%d\n", pos_x, pos_y);
|
|
}
|
|
} else {
|
|
cnt = 0;
|
|
}
|
|
last_data = im_data.read();
|
|
|
|
wait();
|
|
}
|
|
}
|
|
};
|
|
|
|
bool picProcess(uint32_t* image, uint16_t number) {
|
|
uint8_t* data =
|
|
new uint8_t[OUT_WIDTH * OUT_HEIGHT * 3]; // RGB24格式像素数据
|
|
|
|
// software algorthms analyze
|
|
uint32_t red_total = 0, green_total = 0, blue_total = 0;
|
|
uint8_t red_max = 0, green_max = 0, blue_max = 0;
|
|
for (int32_t y = 0; y < OUT_HEIGHT; ++y) {
|
|
for (int32_t x = 0; x < OUT_WIDTH; ++x) {
|
|
int32_t index = (y * OUT_WIDTH + x) * 3;
|
|
|
|
uint8_t red = (image[y * OUT_WIDTH + x] & 0x00ff0000) >> 16;
|
|
uint8_t green = (image[y * OUT_WIDTH + x] & 0x0000ff00) >> 8;
|
|
uint8_t blue = (image[y * OUT_WIDTH + x] & 0x000000ff);
|
|
|
|
// Adjust gamma line
|
|
// red = 255 * std::pow(red / 255.0, 1 / gamma_value);
|
|
// green = 255 * std::pow(green / 255.0, 1 / gamma_value);
|
|
// blue = 255 * std::pow(blue / 255.0, 1 / gamma_value);
|
|
|
|
// Calculate white balance data
|
|
// red_max = std::max(red_max, red);
|
|
// green_max = std::max(green_max, green);
|
|
// blue_max = std::max(blue_max, blue);
|
|
// red_total += red;
|
|
// green_total += green;
|
|
// blue_total += blue;
|
|
|
|
// Adjust vibrance
|
|
// uint8_t max = std::max({red, green, blue});
|
|
// uint8_t min = std::min({red, green, blue});
|
|
// double delta = (max - min) / 255.0;
|
|
// double value = (max + min) / 255.0;
|
|
// if (delta != 0) {
|
|
// double L = value / 2.0;
|
|
// // double S = (L <= 0.5) ? delta / value : delta / (2 -
|
|
// value); double S = delta / max; double alpha = 0.0; if
|
|
// (saturation_inc >= 0) {
|
|
// if ((saturation_inc + S) >= 1)
|
|
// alpha = S;
|
|
// else
|
|
// alpha = 1 - saturation_inc;
|
|
// alpha = 1 / alpha - 1;
|
|
// red = static_cast<uchar>(red + (red - L * 255) * alpha);
|
|
// green =
|
|
// static_cast<uchar>(green + (green - L * 255) *
|
|
// alpha);
|
|
// blue = static_cast<uchar>(blue + (blue - L * 255) *
|
|
// alpha);
|
|
// } else {
|
|
// alpha = saturation_inc;
|
|
// red = static_cast<uchar>(L * 255 +
|
|
// (red - L * 255) * (1 + alpha));
|
|
// green = static_cast<uchar>(L * 255 +
|
|
// (green - L * 255) * (1 +
|
|
// alpha));
|
|
// blue = static_cast<uchar>(L * 255 +
|
|
// (blue - L * 255) * (1 +
|
|
// alpha));
|
|
// }
|
|
// }
|
|
|
|
// Contrast enhancement
|
|
// red = static_cast<uchar>(contrast * (red - 128) + 128);
|
|
// green = static_cast<uchar>(contrast * (green - 128) + 128);
|
|
// blue = static_cast<uchar>(contrast * (blue - 128) + 128);
|
|
|
|
|
|
// save data
|
|
data[index + 0] = red; // R
|
|
data[index + 1] = green; // G
|
|
data[index + 2] = blue; // B
|
|
}
|
|
}
|
|
|
|
// Adjust White Balance : Grey World Color Correction
|
|
// double K = static_cast<double>(red_total + green_total + blue_total) /
|
|
// (3 * OUT_SIZE);
|
|
// white_gain.red = static_cast<double>(K * OUT_SIZE) / red_total;
|
|
// white_gain.green = static_cast<double>(K * OUT_SIZE) / green_total;
|
|
// white_gain.blue = static_cast<double>(K * OUT_SIZE) / blue_total;
|
|
// printf("Gain: red = %f, green = %f, blue = %f", white_gain.red,
|
|
// white_gain.green, white_gain.blue);
|
|
// for (int32_t y = 0; y < OUT_HEIGHT; ++y) {
|
|
// for (int32_t x = 0; x < OUT_WIDTH; ++x) {
|
|
// int32_t index = (y * OUT_WIDTH + x) * 3;
|
|
|
|
// data[index + 0] =
|
|
// static_cast<uint8_t>(white_gain.red * data[index + 0]);
|
|
// data[index + 1] =
|
|
// static_cast<uint8_t>(white_gain.green * data[index + 1]);
|
|
// data[index + 2] =
|
|
// static_cast<uint8_t>(white_gain.blue * data[index + 2]);
|
|
// }
|
|
// }
|
|
|
|
// save to bmp
|
|
std::cout << "Ready to save raw RGB image" << std::endl;
|
|
char file_name[64] = {0};
|
|
snprintf(file_name, sizeof(file_name), "pic_%d.bmp", number);
|
|
write_bmp(file_name, data, OUT_WIDTH, OUT_HEIGHT);
|
|
delete[] data;
|
|
|
|
return true;
|
|
}
|
|
|
|
int sc_main(int argc, char* argv[]) {
|
|
std::cout << "Get into sc_main" << std::endl;
|
|
// Open image
|
|
std::ifstream in_image;
|
|
in_image.open("./transform/test.bin", std::ios::in | std::ios::binary);
|
|
if (!in_image.is_open()) {
|
|
std::cout << "Open image fail" << std::endl;
|
|
exit(0);
|
|
} else {
|
|
std::cout << "Ready to sim" << std::endl;
|
|
}
|
|
|
|
// Read image
|
|
auto buf = std::make_unique<uint8_t[]>(2 * IN_SIZE);
|
|
in_image.read((char*)buf.get(), IN_SIZE * 2);
|
|
in_image.close();
|
|
// Reshape data
|
|
auto image = std::make_unique<uint16_t[]>(IN_SIZE);
|
|
uint32_t i = 0;
|
|
for (int y = 0; y < IN_HEIGHT; y++) {
|
|
for (int x = 0; x < IN_WIDTH; x++) {
|
|
image[y * IN_WIDTH + x] =
|
|
(uint16_t)buf[i] + ((uint16_t)buf[i + 1] << 8);
|
|
i += 2;
|
|
}
|
|
}
|
|
std::cout << "Finish Reading data" << std::endl;
|
|
|
|
// This is a more complicated example, please also see the simpler
|
|
// examples/make_hello_c.
|
|
|
|
// Create logs/ directory in case we have traces to put under it
|
|
Verilated::mkdir("logs");
|
|
|
|
// Set debug level, 0 is off, 9 is highest presently used
|
|
// May be overridden by commandArgs argument parsing
|
|
Verilated::debug(0);
|
|
|
|
// Randomization reset policy
|
|
// May be overridden by commandArgs argument parsing
|
|
Verilated::randReset(2);
|
|
|
|
// Before any evaluation, need to know to calculate those signals only used
|
|
// for tracing
|
|
Verilated::traceEverOn(true);
|
|
|
|
// Pass arguments so Verilated code can see them, e.g. $value$plusargs
|
|
// This needs to be called before you create any model
|
|
Verilated::commandArgs(argc, argv);
|
|
|
|
// General logfile
|
|
std::ios::sync_with_stdio();
|
|
|
|
// Define clocks
|
|
sc_clock clk{"clk", 10, SC_NS, 0.5, 3, SC_NS, true};
|
|
// Define interconnect
|
|
sc_signal<bool> reset;
|
|
|
|
sc_signal<bool> in_en;
|
|
sc_signal<bool> in_ready;
|
|
// sc_signal<bool> in_receive;
|
|
sc_signal<uint32_t> in_data[3];
|
|
|
|
sc_signal<bool> out_clk;
|
|
sc_signal<bool> out_en;
|
|
sc_signal<bool> out_ready;
|
|
sc_signal<bool> out_receive;
|
|
sc_signal<uint32_t> out_data;
|
|
|
|
sc_signal<bool> blender_enable;
|
|
sc_signal<uint32_t> gain_red;
|
|
sc_signal<uint32_t> gain_green;
|
|
sc_signal<uint32_t> gain_blue;
|
|
|
|
sc_signal<bool> gamma_enable;
|
|
sc_signal<uint32_t> gamma_inverse;
|
|
sc_signal<uint32_t> gamma_table[256];
|
|
|
|
sc_signal<uint32_t> white_gain[3];
|
|
sc_signal<uint32_t> flame_rate;
|
|
sc_signal<bool> white_enable;
|
|
|
|
sc_signal<bool> saturation_enable;
|
|
sc_signal<uint32_t> saturation_increase;
|
|
|
|
sc_signal<bool> flag_done;
|
|
|
|
// Construct the Verilated model, from inside Visp.h
|
|
// Using unique_ptr is similar to "Visp* isp = new Visp" then deleting at
|
|
// end
|
|
const std::unique_ptr<Visp> isp{new Visp{"isp"}};
|
|
// Attach Visp's signals to this upper model
|
|
isp->clk(clk);
|
|
isp->reset(reset);
|
|
isp->in_en(in_en);
|
|
isp->in_ready(in_ready);
|
|
// isp->in_receive(in_receive);
|
|
isp->in_data[0](in_data[0]);
|
|
isp->in_data[1](in_data[1]);
|
|
isp->in_data[2](in_data[2]);
|
|
isp->out_clk(out_clk);
|
|
isp->out_en(out_en);
|
|
isp->out_ready(out_ready);
|
|
isp->out_receive(out_receive);
|
|
isp->out_data(out_data);
|
|
|
|
isp->gain_red(gain_red);
|
|
isp->gain_green(gain_green);
|
|
isp->gain_blue(gain_blue);
|
|
isp->blender_enable(blender_enable);
|
|
|
|
isp->gamma_enable(gamma_enable);
|
|
// isp->gamma_inverse(gamma_inverse);
|
|
|
|
isp->white_enable(white_enable);
|
|
isp->flame_rate(flame_rate);
|
|
isp->white_gain[0](white_gain[0]);
|
|
isp->white_gain[1](white_gain[1]);
|
|
isp->white_gain[2](white_gain[2]);
|
|
|
|
isp->saturation_enable(saturation_enable);
|
|
isp->saturation_inc(saturation_increase);
|
|
|
|
blender_enable = true; // enable color correction
|
|
gain_red = static_cast<uint32_t>(color_gain.red * std::pow(2, 8));
|
|
gain_green = static_cast<uint32_t>(color_gain.green * std::pow(2, 8));
|
|
gain_blue = static_cast<uint32_t>(color_gain.blue * std::pow(2, 8));
|
|
|
|
gamma_enable = true;
|
|
gamma_inverse = static_cast<uint32_t>((1.0 / gamma_value) * std::pow(2, 8));
|
|
for (int i = 0; i < 256; i++) {
|
|
// calculate gamma table
|
|
isp->gamma_table[i](gamma_table[i]);
|
|
gamma_table[i] = static_cast<uint32_t>(255 * pow(i / 255.0, 1.0 / gamma_value));
|
|
}
|
|
|
|
white_enable = true;
|
|
flame_rate = 0;
|
|
white_gain[0] = 255;
|
|
white_gain[1] = 255;
|
|
white_gain[2] = 255;
|
|
|
|
saturation_enable = true;
|
|
saturation_increase =
|
|
(int32_t)((saturation_inc >= 0) ? (saturation_inc * std::pow(2, 8))
|
|
: (saturation_inc * std::pow(2, 8)));
|
|
|
|
// Construct testbench module
|
|
TB_ISP tb_isp("tb_isp");
|
|
tb_isp.clk(clk);
|
|
tb_isp.reset(reset);
|
|
tb_isp.in_ready(out_ready);
|
|
tb_isp.in_receive(out_receive);
|
|
tb_isp.out_en(in_en);
|
|
tb_isp.out_ready(in_ready);
|
|
// tb_isp.out_receceive(in_receive);
|
|
tb_isp.out_data[0](in_data[0]);
|
|
tb_isp.out_data[1](in_data[1]);
|
|
tb_isp.out_data[2](in_data[2]);
|
|
tb_isp.im_clk(out_clk);
|
|
tb_isp.im_en(out_en);
|
|
tb_isp.im_data(out_data);
|
|
tb_isp.is_done(flag_done);
|
|
tb_isp.image = move(image);
|
|
|
|
// You must do one evaluation before enabling waves, in order to allow
|
|
// SystemC to interconnect everything for testing.
|
|
sc_start(SC_ZERO_TIME);
|
|
|
|
// If verilator was invoked with --trace argument,
|
|
// and if at run time passed the +trace argument, turn on tracing
|
|
VerilatedVcdSc* tfp = nullptr;
|
|
const char* flag = Verilated::commandArgsPlusMatch("trace");
|
|
if (flag && 0 == std::strcmp(flag, "+trace")) {
|
|
std::cout << "Enabling waves into logs/vlt_dump.vcd...\n";
|
|
tfp = new VerilatedVcdSc;
|
|
isp->trace(tfp, 99); // Trace 99 levels of hierarchy
|
|
Verilated::mkdir("logs");
|
|
tfp->open("logs/vlt_dump.vcd");
|
|
}
|
|
|
|
// Simulate until $finish
|
|
while (!Verilated::gotFinish()) {
|
|
// Flush the wave files each cycle so we can immediately see the output
|
|
// Don't do this in "real" programs, do it in an abort() handler instead
|
|
if (tfp) tfp->flush();
|
|
|
|
// Apply inputs
|
|
if (sc_time_stamp() < sc_time(10, SC_NS)) {
|
|
reset.write(1); // Assert reset
|
|
} else {
|
|
reset.write(0); // Deassert reset
|
|
}
|
|
|
|
if (flag_done.read()) break;
|
|
|
|
// Simulate 1ns
|
|
sc_start(1, SC_NS);
|
|
}
|
|
|
|
// Final model cleanup
|
|
isp->final();
|
|
|
|
// Close trace if opened
|
|
if (tfp) {
|
|
tfp->close();
|
|
tfp = nullptr;
|
|
}
|
|
|
|
// Return good completion status
|
|
return 0;
|
|
}
|