ISP/src/sc_main.cpp

426 lines
12 KiB
C++
Executable File

// For read and write
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <ios>
#include <iostream>
// SystemC global header
#include "sysc/communication/sc_signal.h"
#include "sysc/kernel/sc_module.h"
#include <systemc>
// Include common routines
#include <string>
#include <sys/stat.h> // mkdir
#include <utility>
#include <vector>
#include <verilated.h>
#include <verilated_vcd_sc.h>
// Include model header, generated from Verilating "isp.v"
#include "Visp.h"
// Write Pictures
#include "bitmap_image.hpp"
SC_MODULE(TB_ISP) {
sc_core::sc_in_clk clk;
sc_core::sc_in<bool> rst;
sc_core::sc_in<bool> in_ready; // next module ready to receive data
sc_core::sc_out<bool> out_valid; // next module data valid signal
sc_core::sc_out<uint32_t> out_data[3]; // next module receive data
sc_core::sc_in<bool> in_valid; // this module receive data valid signal
sc_core::sc_out<bool> out_ready; // this module ready to receive data
sc_core::sc_in<uint32_t> in_data; // this module receive data
const uint16_t IN_WIDTH;
const uint16_t IN_HEIGHT;
const uint32_t IN_SIZE;
const uint16_t OUT_WIDTH;
const uint16_t OUT_HEIGHT;
const uint32_t OUT_SIZE;
const uint32_t FLAMES;
const std::string OUT_DIR;
bool is_done; // when receive all data
std::vector<uint16_t> image; // the data of image
std::vector<uint32_t> process_image; // after isp process, the data of image
SC_CTOR(TB_ISP, const uint16_t in_width, const uint16_t in_height,
const uint16_t out_width, const uint16_t out_height,
const uint32_t cnt_flame, const std::string& out_dir)
: IN_WIDTH(in_width), IN_HEIGHT(in_height), IN_SIZE(in_width * in_height),
OUT_WIDTH(out_width), OUT_HEIGHT(out_height),
OUT_SIZE(out_width * out_height), FLAMES(cnt_flame),
OUT_DIR(out_dir),
process_image(std::vector<uint32_t>(out_width * out_height, 0)) {
SC_CTHREAD(sendData, clk.pos()); // when clk posedge, exec sendData
reset_signal_is(rst, true); // set rst signal
SC_CTHREAD(readData, clk.pos());
reset_signal_is(rst, true); // set rst signal
}
void sendData(void) {
// init var
uint16_t pos_x = 0, pos_y = 0, cnt_flame = 0;
bool is_finish = false; // when send all data
// reset
out_valid = false;
for (auto &data : out_data)
data = 0;
while (true) {
if (in_ready && !is_finish) {
// valid and send data
out_valid = true;
out_data[0] = image[(pos_y + 0) * IN_WIDTH + pos_x];
out_data[1] = image[(pos_y + 1) * IN_WIDTH + pos_x];
out_data[2] = image[(pos_y + 2) * IN_WIDTH + pos_x];
// print data
std::printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y,
image[(pos_y + 0) * IN_WIDTH + pos_x]);
std::printf("x=%4d, y=%4d, data=0x%04x\t", pos_x, pos_y,
image[(pos_y + 1) * IN_WIDTH + pos_x]);
std::printf("x=%4d, y=%4d, data=0x%04x\n", pos_x, pos_y,
image[(pos_y + 2) * IN_WIDTH + pos_x]);
pos_x++;
// calculate position and recognize when to finish
if (pos_x >= IN_WIDTH) {
pos_x = 0;
pos_y++;
}
if (pos_y >= IN_HEIGHT - 1) {
pos_y = 0;
cnt_flame++;
}
if (cnt_flame >= FLAMES) {
is_finish = true;
}
} else {
out_valid = false;
}
// wait for next clk
wait();
}
}
void readData(void) {
// init local var
uint16_t pos_x = 0, pos_y = 0, cnt_flame = 0;
uint32_t last_data = 0, cnt = 0;
bool is_finish = false;
// reset
out_ready = false;
is_done = false;
while (true) {
if (!is_finish) {
out_ready = true;
// when data valid, write it down
if (in_valid) {
process_image[pos_y * OUT_WIDTH + pos_x] = in_data;
// calculate position
pos_x++;
if (pos_x >= OUT_WIDTH) {
pos_x = 0;
pos_y++;
}
if (pos_y >= OUT_HEIGHT) {
pos_y = 0;
saveData(
("output_img_" + std::to_string(cnt_flame) + ".bmp").c_str());
cnt_flame++;
}
if (cnt_flame >= FLAMES) {
is_finish = true;
}
}
} else {
out_ready = false;
}
// when no data send, give finish signal
if (is_finish && (last_data == in_data)) {
cnt++;
if (cnt >= 100000L) { // when receive many times the same data
is_done = true;
std::printf("Finish Reading data; pos_x = %d, pos_y = %d\n", pos_x,
pos_y);
}
} else {
cnt = 0;
}
last_data = in_data;
// wait for next clk
wait();
}
}
bool saveData(const char *name) {
bool ret = true;
// Check Image Size
if (process_image.size() > OUT_SIZE) {
std::cout << "Process Image Over Size!!!\n"
<< "Image Size:" << process_image.size() << "\n";
return false;
}
// Write BMP image
bitmap_image bmp(OUT_WIDTH, OUT_HEIGHT);
if (!bmp) {
std::cout << "Output Image Open Failed!!!\n";
return false;
}
for (int y = 0; y < OUT_HEIGHT; y++)
for (int x = 0; x < OUT_WIDTH; x++)
bmp.set_pixel(x, y,
(process_image[y * OUT_WIDTH + x] & 0x00ff0000) >> 16,
(process_image[y * OUT_WIDTH + x] & 0x0000ff00) >> 8,
(process_image[y * OUT_WIDTH + x] & 0x000000ff) >> 0);
bmp.save_image(std::string(OUT_DIR) + name);
return ret;
}
};
// Image Parameters
static const uint16_t IN_WIDTH = 1936;
static const uint16_t IN_HEIGHT = 1088;
static const uint32_t IN_SIZE = (IN_WIDTH * IN_HEIGHT);
static const uint16_t OUT_WIDTH = 1920;
static const uint16_t OUT_HEIGHT = 1080;
static const uint32_t OUT_SIZE = (OUT_WIDTH * OUT_HEIGHT);
static const uint32_t FLAMES = 2;
// Input image path and Output directory path
#ifndef INPUT_IMG
const char *INPUT_IMG = "./src/transform/test.bin";
#endif
#ifndef OUTPUT_DIR
const char *OUTPUT_DIR = "./logs/";
#endif
// color gain for correcting color
struct color_gain {
double red;
double green;
double blue;
} color_gain{1.1, 0.7, 1.3}, white_gain;
static const double gamma_value = 2.2;
static const double sat_inc = 0.5;
static const double contrast = 1.2;
using namespace sc_core;
using namespace sc_dt;
int sc_main(int argc, char *argv[]) {
std::printf("Enter into sc_main\n");
// Open Image
std::ifstream image;
image.open(INPUT_IMG, std::ios::in | std::ios::binary);
// Check image whether is open
if (!image.is_open()) {
std::printf("Open Image Failed!!!\n");
exit(0);
} else {
std::printf("Open Image Successfully!!!\n");
}
// Read and Transform Image
std::vector<uint16_t> in_image(IN_SIZE);
uint8_t *buf = new uint8_t[2 * IN_SIZE];
image.read((char *)buf, 2 * IN_SIZE);
uint32_t i = 0;
for (int y = 0; y < IN_HEIGHT; y++) {
for (int x = 0; x < IN_WIDTH; x++) {
in_image[y * IN_WIDTH + x] =
(uint16_t)buf[i] + ((uint16_t)buf[i + 1] << 8);
i += 2;
}
}
// Close and delete image
image.close();
delete[] buf;
std::printf("Finish Reading Image\n");
// This is a more complicated example, please also see the simpler
// examples/make_hello_c.
// Create logs/ directory in case we have traces to put under it
Verilated::mkdir("logs");
// Set debug level, 0 is off, 9 is highest presently used
// May be overridden by commandArgs argument parsing
Verilated::debug(0);
// Randomization reset policy
// May be overridden by commandArgs argument parsing
Verilated::randReset(2);
// Before any evaluation, need to know to calculate those signals only used
// for tracing
Verilated::traceEverOn(true);
// Pass arguments so Verilated code can see them, e.g. $value$plusargs
// This needs to be called before you create any model
Verilated::commandArgs(argc, argv);
// General logfile
std::ios::sync_with_stdio();
// Define clocks
sc_clock clk{"clk", 10, SC_NS, 0.5, 3, SC_NS, true};
// Define interconnect
sc_signal<bool> rst;
// ISP Modules in ports
sc_signal<bool> in_valid;
sc_signal<bool> in_ready;
sc_signal<uint32_t> in_data[3];
// ISP Modules out ports
sc_signal<bool> out_valid;
sc_signal<bool> out_ready;
sc_signal<uint32_t> out_data;
// ISP Modules Enable Ports
sc_signal<bool> blender_enable;
sc_signal<bool> gamma_enable;
sc_signal<bool> white_enable;
sc_signal<bool> saturation_enable;
// ISP Modules Configurations Ports
sc_signal<uint32_t> gain_red;
sc_signal<uint32_t> gain_green;
sc_signal<uint32_t> gain_blue;
sc_signal<uint32_t> flame_rate;
sc_signal<uint32_t> saturation_inc;
sc_signal<uint32_t> gamma_table[256];
sc_signal<uint32_t> white_gain[3];
// Construct the Verilated model, from inside Visp.h
Visp isp("Visp");
isp.clk(clk);
isp.reset(rst);
isp.in_en(in_valid);
isp.in_ready(in_ready);
for (int i = 0; i < 3; i++)
isp.in_data[i](in_data[i]);
sc_signal<bool> out_receive;
isp.out_receive(out_receive);
isp.out_en(out_valid);
isp.out_ready(out_ready);
isp.out_data(out_data);
isp.blender_enable(blender_enable);
isp.gamma_enable(gamma_enable);
isp.white_enable(white_enable);
isp.saturation_enable(saturation_enable);
isp.gain_red(gain_red);
isp.gain_green(gain_green);
isp.gain_blue(gain_blue);
isp.flame_rate(flame_rate);
isp.saturation_inc(saturation_inc);
for (int i = 0; i < 256; i++)
isp.gamma_table[i](gamma_table[i]);
for (int i = 0; i < 3; i++)
isp.white_gain[i](white_gain[i]);
// Construct testbench module
TB_ISP tb_isp("tb_isp", IN_WIDTH, IN_HEIGHT, OUT_WIDTH, OUT_HEIGHT, FLAMES, OUTPUT_DIR);
tb_isp.image = std::move(in_image);
tb_isp.clk(clk);
tb_isp.rst(rst);
// Connect input signal
tb_isp.in_valid(out_valid);
tb_isp.in_ready(out_ready);
tb_isp.in_data(out_data);
// Connect output signal
tb_isp.out_valid(in_valid);
tb_isp.out_ready(in_ready);
for (int i = 0; i < 3; i++)
tb_isp.out_data[i](in_data[i]);
// Set ISP modules parameters
// Color Blender
blender_enable = true;
gain_red = static_cast<uint32_t>(color_gain.red * std::pow(2, 8));
gain_green = static_cast<uint32_t>(color_gain.green * std::pow(2, 8));
gain_blue = static_cast<uint32_t>(color_gain.blue * std::pow(2, 8));
// Gamma table
gamma_enable = true;
for (int i = 0; i < 256; i++) {
gamma_table[i] =
static_cast<uint32_t>(255 * pow(i / 255.0, 1.0 / gamma_value));
}
// White Correction
white_enable = true;
flame_rate = 0;
white_gain[0] = 255;
white_gain[1] = 255;
white_gain[2] = 255;
// Saturation Correction
saturation_enable = true;
saturation_inc = (int32_t)((sat_inc >= 0) ? (sat_inc * std::pow(2, 8))
: (sat_inc * std::pow(2, 8)));
// You must do one evaluation before enabling waves, in order to allow
// SystemC to interconnect everything for testing.
sc_start(SC_ZERO_TIME);
// If verilator was invoked with --trace argument,
// and if at run time passed the +trace argument, turn on tracing
VerilatedVcdSc *tfp = nullptr;
const char *flag = Verilated::commandArgsPlusMatch("trace");
if (flag && 0 == std::strcmp(flag, "+trace")) {
std::cout << "Enabling waves into logs/vlt_dump.vcd...\n";
tfp = new VerilatedVcdSc;
isp.trace(tfp, 99); // Trace 99 levels of hierarchy
Verilated::mkdir("logs");
tfp->open("logs/vlt_dump.vcd");
}
// Simulate until $finish
std::cout << "Ready to simulate!\n";
while (!Verilated::gotFinish()) {
// Flush the wave files each cycle so we can immediately see the output
// Don't do this in "real" programs, do it in an abort() handler instead
if (tfp)
tfp->flush();
// Apply inputs
if (sc_time_stamp() < sc_time(10, SC_NS)) {
rst.write(1); // Assert reset
} else {
rst.write(0); // Deassert reset
}
if (tb_isp.is_done)
break;
// Simulate 1ns
sc_start(1, SC_NS);
}
// Final model cleanup
isp.final();
// Close trace if opened
if (tfp) {
tfp->close();
tfp = nullptr;
}
// Return good completion status
return 0;
}